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Abstract

In this paper we analyse labour market dynamics, with a twofold purpose of in-
terpreting the main movements in the labour market variables through the lenses of
structural shocks, and at the same time being able to produce reliable and economic in-
terpretable forecasts. Further, we want to exploit the relevant information contained in
the labour market flows. To do so, we use a mixed-frequency Bayesian VAR, which can
incorporate the latest information and take into account monthly and quarterly data.
We obtain satisfactory results in forecasting quarterly variables. From an economic
perspective, we disentangle the shocks that explained the behaviour of the main eco-
nomic variables, and, among other findings, we show the relevance of shocks originated
in the labour market.
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Non-technical summary

The importance of labour market dynamics is crucial for understanding the macroeconomic
developments in the economy. While there is a substantial literature for the U.S. economy
from both a structural and forecasting points of view, there is a scarce number of studies
focusing on the euro area. With this paper, therefore, we aim at filling this gap, and we in-
troduce a model for the euro area labour market with the twofold purpose of interpreting the
main movements in the labour market variables through the lenses of structural shocks, and
at the same time being able to produce reliable and economic interpretable forecasts. Fol-
lowing the established work of Shimer (2007), Barnichon (2012) and Barnichon and Nekarda
(2012), we consider labour market flows for understanding and predicting unemployment
fluctuations. The relative importance and the rate at which workers flow into and out of the
unemployment pool are crucial for determining the unemployment dynamics.

To address data availability issues we choose to set up a mixed-frequency model, a natural
framework to take into account data at different frequencies and publication lags. In par-
ticular, we follow the approach of Schorfheide and Song (2015), and use a mixed-frequency
Bayesian VAR. The choice of this method is driven by the purpose of our study of hav-
ing a set of variables which depicts the labour market dynamics and at the same time to
be able to provide reliable forecasts and give a structural interpretation of the projected
path of the main variables. Our methodological contribution hinges in the extension of the
model of Schorfheide and Song (2015) into the literature of Structural VARs. To do so, we
augment their algorithm in order to identify key macroeconomic shocks by means of sign
restrictions. Specifically, we identify supply, domestic and foreign demand, labour supply,
wage-bargaining, and mismatch shocks.

What we find is that satisfactory results are obtained in terms of forecasting, especially
when looking at quarterly variables, as employment growth and compensation per employee.
These findings are aligned with most of the results available in the mixed-frequency liter-
ature. Further, we look into the shocks which drove the labour market dynamics and we
find interesting insights. First, demand shocks were the main drivers during the past Great
Recession. Second, shocks originated in the labour markets play an important role in ex-
plaining the period of low inflation from 2014 onward, highlighting the crucial role played
by labour markets in the economic analysis. Finally, from a practitioner’s point of view,
it is possible to use our model also to provide an economic interpretation to the generated
forecasts in order to understand what are the drivers behind the projected path.
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1 Introduction

Understanding the labour market dynamics is of high importance for interpreting the macroe-
conomic developments in an economy. While there is a substantial literature to understand
the dynamics of labour markets in the U.S. from a structural point of view (see, among
many, Gertler et al. (2008), Mumtaz and Zanetti (2012), Christiano et al. (2016)) and also
for forecasting purposes (e.g. Montgomery et al. (1998), Askitas and Zimmermann (2009),
D’Amuri and Marcucci (2017)), not many studies are available to understand the euro area
labour markets developments. The need of covering the euro area labour market is relevant,
because the labour market structure is quite different from the U.S., in terms of regulations,
composition of the labour force and the dynamics of the ins and outs of unemployment. With
this paper, therefore, we aim at filling this gap, and we introduce a model for the euro area
labour market with the twofold purpose of interpreting the main movements in the labour
market variables through the lenses of structural shocks, and at the same time being able to
produce reliable and economic interpretable forecasts.

In order to reach our goal, we develop a Structural VAR model, which includes mixed-
frequency data and it is identified by sign restrictions. We are, in fact, interested in getting
a “real-time” evaluation of the labour market for the euro area. Therefore, we face the fact
that some variables are available at monthly frequency (as unemployment rate and survey
measures), while other labour market indicators (as employment and labour market flows)
are available only at quarterly frequency, and with different publication lags. To address data
availability issues we choose to set up a mixed-frequency model, a natural framework to take
into account data at different frequencies and publication lags. While the literature in mixed-
frequency techniques is vast by now, in this paper we follow the approach by Schorfheide
and Song (2015) and use a mixed-frequency Bayesian VAR. The choice of this method is
driven by the purpose of our study: first, we want to have a set of variables which depicts
the labour market dynamics; second, we want to be able to provide a reliable forecast of the
main variables; third, we want to have a structural interpretation of the projected path in
light of economic shocks which are likely to generate the forecast. A VAR set up is therefore
very convenient for us, given that it allows to identify shocks in a straightforward manner.
While there are few examples of structural mixed-frequency VARs (see Foroni and Marcellino
(2014) as a reference), to the best of our knowledge, however, no previous papers use sign
restrictions in mixed-frequency VARs and we therefore aim at closing a methodological gap.

What we find is that satisfactory results are obtained in terms of forecasting, especially
when looking at quarterly variables, as employment growth and compensation per employee.
These findings are aligned with most of the results available in the mixed-frequency literature.
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Unemployment rate is more difficult to predict, given that the information contained in its
own lags is often already sufficient to provide a good forecast. Further, we look into the shocks
which drove the labour market dynamics and we find interesting insights. First, demand
shocks were the main drivers during the past Great recession. Second, shocks originating
in the labour markets play an important role in explaining the period of low inflation from
2014 onward, highlighting the crucial role played by labour markets in the economic analysis.
Finally, from a practitioner’s point of view, it is possible to use our model also to provide
an economic interpretation to the generated forecasts in order to understand what are the
drivers behind a projected path.

In addition to the results just mentioned, another contribution in our analysis stays in
considering labour market flows, and not only the more standard employment and unemploy-
ment rate. The role of labour market flows in understanding and predicting unemployment
fluctuations is well established in the literature. The relative importance and the rate at
which workers flow into and out of the unemployment pool are crucial for determining unem-
ployment dynamics in various countries. Starting with the milestone contribution of Shimer
(2007), various papers in the literature looked at establishing methods to derive appropri-
ate measures of flows (see, among others, Elsby et al. (2013) and Barnichon (2012)). The
information contained in the labour market flows can be helpful in predicting the dynamics
of other labour market variables, and of the economy more in general. The paper by Barni-
chon and Nekarda (2012) shows that the inflow and outflow rates of unemployment convey
useful information for the unemployment level in the U.S. economy. Promising results for
predicting quarterly unemployment are obtained also for the OECD countries (see Barni-
chon and Garda (2016)). With our analysis, we confirm that the inclusion of flows in the set
of variables helps the prediction of employment growth and wage growth. The inclusion of
flows also improves the forecasts of unemployment rate, consistently with the findings in the
literature, but still the information on those is not enough to predict monthly developments
in the unemployment rate.

The remainder of the paper is organized as follows: Section 2 describes in detail the nota-
tion and the algorithms which allow us to estimate the model and to include sign restrictions
on it. Section 3 provides a detailed description of our baseline model and the main results.
Section 4 concludes.
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2 Mixed-frequency Bayesian Vector Autoregression with sign
restrictions

One of the main contributions of this paper its to include sign restrictions in a mixed fre-
quency VAR setup. As we describe in the rest of the section, we follow the model by
Schorfheide and Song (2015) and extend their methodology to a Structural VAR where we
identify key macroeconomic shocks by means of sign restrictions.

2.1 The Schorfheide and Song (2015) model

Following Schorfheide and Song (2015), let us assume we have a group of Nm monthly
variables denoted by xm,t and Nq quarterly variables represented by yq,t, for i = 1, · · · , T
months. The block yq,t is a set of variables with missing observations and have available
data only every third month. We are interested in modelling the joint dynamics of these
two groups of variables as a vector autoregression (VAR). To achieve this, we consider the
latent monthly counterpart of the quarterly variables which we denote as xq,t.1 We gather the
monthly information sets in the time series vector xt = [x′m,t, x′q,t] of dimension N = Nm+Nq

and we assume it evolves as a VAR with p lags in the following way:

xt = c+ A1xt−1 + · · ·+ Apxt−p + ut, where ut
iid∼ N(0,Σ), (1)

where Ai are matrices of reduced-form parameters, for i = 1, · · · , p, ut = [u′m,t, u′q,t]′ is a
vector of reduced-form errors and c = [c′m, c′q]′ is a vector of constants.

Now, let us rewrite the VAR in compact form by stacking all lags of xt in vector zt−1 as
follows:

xt = c+ A+zt−1 + ut. (2)

The Np × 1 vector zt−1 = [z′m,t−1, z
′
q,t−1]′ is decomposed in two parts. The first block cor-

responds to the Nmp × 1 vector zm,t−1 = [x′m,t−1, x
′
m,t−2, · · · , x′m,t−p+1]′ which contains all

the lags of monthly variables. The second block stacks the lags of the quarterly set in the
Nqp× 1 vector zq,t−1 = [x′q,t−1, x

′
q,t−2, · · · , x′q,t−p+1]′. The N ×Np matrix A+ stacks matrices

Ai. In equation (3), we rewrite the compact VAR in terms of the blocks of monthly and
quarterly variables. We divide the matrix of parameters into four sub-matrices: Amm which

1Notice that from now on, the letter x will represent a variable in monthly terms. Here we have two cases:
(i) xm,t which is originally available at this frequency and (ii) xq,t which is a latent monthly counterpart of
the quarterly (and observable) variable yq,t.
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is a Nm × Nmp matrix of parameters governing the relationship among monthly variables;
Amq, a Nm×Nqp matrix containing the impact of quarterly variables into monthly equations;
similarly, Aqm is a Nq×Nmp matrix representing the impact of monthly variables into quar-
terly equations and Aqq is a Nq×Nqp matrix with the interactions among quarterly variables.
The blocks of constants cq and cm are of dimension Nq × 1 and Nm × 1, respectively. The
same dimensions apply for the blocks of error terms uq,t and um,t. xm,t

xq,t

 =
 cm

cq

+
 Amm Amq

Aqm Aqq

  zm,t−1

zq,t−1

+
 um,t

uq,t

 , (3)

In a similar way, we partition the covariance matrix into four blocks:

Σ =
 Σmm Σmq

Σqm Σqq

 . (4)

Since the block VAR contains latent variables, we need to write the model in a state-
space representation in order to obtain estimates of both the parameters and the states. To
do this, let us denote T as the sample size which is defined as the last month for which we
have at least one observation in the monthly block; Tbq is the time period at which we have a
quarterly balanced set and finally Tb is the data point for which we have a balanced panel in
the monthly block. Notice that, not all monthly variables might be available between Tb and
T and in a similar fashion we can face ragged edges within the quarterly set. Summarising,
we could have three types of missing observations: (i) mixed frequencies from t = 1, · · · , Tb,
(ii) ragged edges in the quarterly set and (iii) ragged edges in the monthly variables. As an
illustration of these problems, we consider the case of a data set with two monthly and three
quarterly variables that have the following missing observations pattern:

Table 1: Type of missing observations

Jun 19 xm1,1 xm2,1 yq1,1 yq2,1 yq3,1 t = Tbq

Jul 19 xm1,2 xm2,2 NaN NaN NaN
Aug 19 xm1,3 xm2,3 NaN NaN NaN
Sep 19 xm1,9 xm2,9 yq1,9 yq2,9 NaN
Oct 19 xm1,10 xm2,10 NaN NaN NaN
Nov 19 xm1,11 xm2,11 NaN NaN NaN
Dec 19 xm1,12 xm2,12 yq1,12 NaN NaN t = Tb

Jan 20 xm1,13 xm2,13 NaN NaN NaN
Feb 20 xm1,14 NaN NaN NaN NaN t = T
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Taking a look at this example, we can recognize that until time t = Tb the state vector
only corresponds to the quarterly block. However, due to the presence of missing monthly
observations between Tb and T , a subset of the monthly block becomes a state for t > Tb.
For this reason, we split our problem into two state-space representations.

The first state-space model copes with the problem of having two frequencies and the fact
that we are interested in obtaining an estimate of xq,t, the monthly counterpart of quarterly
variables. Additionally, we might encounter the problem of ragged edges within the observed
quarterly variables, yq,t. The starting point is to recognize that we observe Tb observations
for at least one quarterly variable from the set yq,t and up to this period we observe all
monthly variables xm,t. A second time period to consider is Tb,q which is the point at which
the quarterly set is balanced. First, let us define the state and measurement equations for
the mixed frequency set, which is defined for t = 1, · · · , Tb,q. To do this, we partition the
block VAR of equation (3) in two parts: the observable part (monthly variables) and the
latent part which is contained in the second equation. We define the state vector, St, as
follows:

St =
 xq,t

zq,t−1

 =


xq,t

xq,t−1
...

xq,t−p+1

 .

St stacks present and past values of the quarterly set with dimension Ns = Nq(p + 1) ×
1. Disentangling the parts associated to the states in equation (3), the state equation in
companion form is the following:


xq,t

xq,t−1
...

xq,t−p+1


︸ ︷︷ ︸

St

=
 cq

0(Nq×p)×1


︸ ︷︷ ︸

Γc

+

 Aqm

0(Nq×p)×(Nm×p)︸ ︷︷ ︸
Γz

Aqq 0Nq
I(Nq×p) 0(Nq×p)×Nq


︸ ︷︷ ︸

Γs

 zm,t−1

St−1



+
 INq

0(Nq×p)×Nq


︸ ︷︷ ︸

Γu

uq,t

The dimensions of state matrices Γc, Γz, Γs and Γu are Ns × 1, Ns × Nmp, Ns × Ns and
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Ns ×Nq, respectively. Therefore, we compress the state equation as follows:

St = Γc + Γzzm,t−1 + ΓsSt−1 + Γuuq,t (5)

Now, we need to link the observable variables in yq,t with the latent set xq,t. Assuming that
the length of the VAR is larger than three lags, we make a bridge between these variables
through ỹq,t which is the latent monthly average of xq,t if the quarterly variable is a stock
or the sum if it is a flow. Without loss of generality, we position the stock variables first,
therefore the relationship between ỹq,t and the states is summarised by equation (6).

ỹq,t =
 1

3INstock
q

0Nstock
q

1
3INstock

q
0Nstock

q

1
3INstock

q
0Nstock

q
0Nstock

q ×(Ns−Nq)

0Nflow
q

INflow
q

0Nflow
q

INflow
q

0Nflow
q

INflow
q

0Nflow
q ×(Ns−Nq)

St
= ΛsSt, (6)

where N stock
q and N flow

q are the number of stock and flow variables, respectively, and Nq =
N stock
q + N flow

q . Now, let us remember that every three months we observe the quarterly
counterpart of this average/sum in the vector yq,t. Therefore, the bridge between observables
and latent observation is given by equation (7).

yq,t = Mq,tỹq,t. (7)

The key component is matrix Mq,t which is a Nq × Nq selection matrix that will be empty
for the months between the quarter and an identity for the month where we observe the
quarterly variable. Therefore, for periods where we observe quarterly variables, i.e. March,
June, September, December, the measurement equation is the following:

 xm,t

yq,t


︸ ︷︷ ︸

yt

=
 Amm

0Nq×Nmp︸ ︷︷ ︸
Λz

0Nm×Nq Amq

Mq,tΛs


︸ ︷︷ ︸

Λy,s


zm,t−1

xq,t

zq,t−1

 = St

 (8)

+
 cm

0Ns×1


︸ ︷︷ ︸

Λc

+
 INm

0Nq×Nm


︸ ︷︷ ︸

Λu

um,t

Since we observe xm,t, the first line in the measurement equation corresponds to the first
equation of the block VAR of equation (3). Notice that we define yt = [x′m,t, y′q,t]′ as the
vector of data that we actually observe. We now write equation (8) into two measurement
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equations regarding monthly and quarterly variables, separately:

xm,t = Ammzm,t−1 + AmqSt + cm + um,t (9)

yq,t = Mq,tΛsSt (10)

If t corresponds to a month between quarters, i.e. January, February, April, May, July,
August, October or November, we exclusively have one measurement equation which corre-
sponds to equation (9). This is because the selection matrix Mq,t will be empty.

The second type of missing observations in this representation is ragged edges within
quarterly variables, which may occur for t = Tb,q + 1, · · · , Tb. In this instance, we need
to slightly modify the state-space model. We follow the approach of Durbin and Koopman
(2012) who set the model depending on the observations available at each period of time. This
means that the size of the vector of observables is time varying. To illustrate this, lets return
to the example in table 1. By June 2019 (which in this example corresponds to t = Tbq),
we have no missing observations, therefore the size of yt in the measurement equation (8) is
5 × 1. On the other hand, by September 2019 we do not have the information of the last
quarter available for the last quarterly variable, henceforth the size of yt is 4× 1. Finally, by
December 2019 we only have information for the first variable within the quarterly set, and
hence the dimension of yt is 3× 1, respectively. The matrices in the measurement equation
will differ because the row corresponding to the variable missing is suppressed. We denote
Nq∗ as the number of quarterly variables available at time t. For this case, equation (11)
denotes the measurement equation in terms of the available information which is captured
in the (Nm +N∗q )× 1 vector y∗t = [x′m,t, y∗

′
q,t]′. xm,t

y∗q,t


︸ ︷︷ ︸

y∗t

=
 Amm

0N∗q×(Nm×p)︸ ︷︷ ︸
Λ∗z

0Nm×Nq Amq

Λ∗s


︸ ︷︷ ︸

Λ∗y,s

 zm,t−1

St

 (11)

+
 cm

0N∗s×1


︸ ︷︷ ︸

Λ∗c

+
 INm

0N∗q×Nm


︸ ︷︷ ︸

Λ∗u

um,t.

The matrices Λ∗z, Λ∗y,s, Λ∗c and Λ∗u have the dimensions (Nm + N∗q ) × (Nm(1 + p)), (Nm +
N∗q × (Nq(p + 1)), (Nm + N∗q ) × 1 and (Nm + N∗q ) × Nm, respectively. Finally, notice that
this representation is valid only when the month at time t corresponds to the last month of
the corresponding quarter, otherwise equation (9) is the single measurement equation.

The second state-space model considers the case of ragged edges in the monthly block.
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Even though we also could have the same problem in the quarterly set, the approach we took
at the end of the previous subsection does not apply for the monthly variables. Notice that
the quarterly variables have always been considered states and therefore the ragged edge
problem is solved by modifying the matrices depending on the information available. Now, a
subset of monthly variables change their status from being observed to become a state. We
define the new state vector as z̃t = [z′t, x′t−p] which is of dimension Nz̃×1 with Nz̃ = Np+N .
This state vector is only defined for t = Tb + 1, · · · , T for which only monthly variables are
available. The state equation in companion form is represented in equation (12) and it is
based on the compact VAR from equation (2):

z̃t =
 c

0Np×1


︸ ︷︷ ︸

c̃

+
 A+ 0N×N
INp 0Np×N


︸ ︷︷ ︸

Φ̃

z̃t−1 +
 ut

0Np×1


︸ ︷︷ ︸

ũt

. (12)

The companion form matrices c̃, Φ̃ and ũt are of dimension Nz̃ × 1, Nz̃ × Nz̃ and Nz̃ × 1,

respectively. In a similar way, we denote Σz̃ =
 Σ 0Np×N

0N×Np 0N×N

 as the variance covariance

matrix of ũt.
The measurement equation depends exclusively on monthly variables that we observe

from t = Tb + 1, · · · , T . We define Nm̃ as the number of monthly variables available after Tb,
then the measurement equation is the following:

ỹt = Mz̃ z̃t, (13)

where Mz̃ is a Nm̃×Nz̃ selection matrix picking only those variables with observations after
Tb.

2.2 Bayesian estimation

Schorfheide and Song (2015) develop a two-block Gibbs sampler in order to obtain draws from
the conditional posterior distributions of the parameters and states of the model. Specifically,
they start by sampling the state vector following the Carter-Kohn algorithm (see Carter and
Kohn (1994)), which is the Bayesian counterpart of the Kalman filter. Given the states, it
is easy to sample from the conditional distribution of the parameters Φ = [c, A+] and the
reduced-form covariance matrix Σ when the prior is conjugate, i.e. the posterior distribution
belongs to the same distributional family as the prior, assuming a Gaussian likelihood. In
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particular, we consider a Normal-inverse Wishart prior, i.e.

vec(Φ)|Σ ∼ N (vec(Φ0),Σ⊗ V0) and Σ ∼ iW (S, d) (14)

where the moments of the normal distribution of the parameters follow a Minnesota struc-
ture (Litterman (1980), Litterman (1986)). The scale covariance matrix S = diag(s1, · · · , sN)
correspond to the standard deviation of each variable in the training sample. We set the
degrees of freedom d to be N + 2 which is the minimum number such that the mean of an
inverse Wishart distribution exists, see Kadiyala and Karlsson (1997).

Following the set up of the Minnesota prior as in Del Negro and Schorfheide (2011),
we shrink the autoregressive parameters towards a random walk. Therefore, the diagonal
elements of parameter matrix A1 are equal to one and the off-diagonal elements are zero.
Moreover, all matrices related to a lag larger then one are set to zero. For the case of the
covariance, we assume a diagonal matrix where we impose that the more distant lags and
the coefficients from variable k have a smaller weight in the equation of xj,t, for j 6= k and
j, k = 1, · · · , N . These ideas are summarised by the following moments:

E
[
(Ai)jk |Σ

]
=

 1 if j = k and i = 1
0 otherwise

cov
(
(Ai)jk , (Al)mr |Σ

)
=


Σjm

(λ1iλ2)s2
j

if i = l & r = j

0 otherwise
(15)

The overall shrinkage of the parameters is ruled by λ1 and the hyperparameter λ2 rules the
shrinkage of higher-order lags. In general the larger the hyperparameters, the stronger the
shrinkage.

Since the influential paper of Sims and Zha (1998) the implementation of the Minnesota
prior has been commonly adopted through the use of dummy or artificial observations.2

The popularity of this approach is due to the simplicity of implementing additional priors
for modelling further relationships among parameters. Similar as in Schorfheide and Song
(2015), we consider the sum-of-coefficients prior (also known as “inexact-differencing” or
“no-cointegration-prior”) which was proposed by Doan et al. (1984). To understand this
extension, let us rewrite the VAR from equation (1) in an error-correction form:

∆xt = c− (IN − A1 − · · · − Ap)xt−1 + Γ1∆xt−1 + . . .+ Γp−1∆xt−p + ut. (16)
2Many researchers also implement the Minnesota prior through dummy observations as in Bańbura et al.

(2010). For detailed explanation of how this works, see also Del Negro and Schorfheide (2011).
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The combination of the Minnesota with the sum-of-coefficients prior shrinks the parameter
Π = (IN −A1 − · · · −Ap) to zero. This prior introduces an additional shrinkage parameter,
λ3, on the relationship (IN−A1−· · ·−Ap). When λ3 is zero the VAR is set in first differences
which implies a unit root equation for each variable and therefore there are no cointegration
relationships among the variables. If λ3 →∞ the prior is diffuse and no additional shrinkage
is imposed. Sims and Zha (1998) propose the implementation of the previous priors by
augmenting the model’s data with artificial data also called dummy observations as follows:

xd =



λ1diag(s2
1, · · · , s2

N)
0N(p−1)×N

· · ·
diag(s2

1, · · · , s2
N)

· · ·
λ3diag(ȳ0,1, · · · , ȳ0,N)


zd =



Jλ2 ⊗ λ1diag(s2
1, · · · , s2

N) 0Np×1

· · ·
0N×Np 0N×1

· · ·
(11×p ⊗ λ3diag(ȳ0,1, · · · , ȳ0,N)) λ3



where J = diag(1, · · · , p). In summary, the artificial observations consists of three blocks.
The first one implements the moments of autoregressive coefficients following the Minnesota
prior, as in equation (15). The second block corresponds to the prior for the covariance
matrix Σ and the last block corresponds to the sum-of-coefficients prior.

The augmented data is defined as X∗ = [X ′, x′d]′, Z∗ = [Z ′, z′d]′, where X and Z come from
the matrix form of the compact VAR (2). Henceforth, we now have T ∗ = T+Td observations.
Accordingly to Kadiyala and Karlsson (1997), we consider the following augmented VAR:

X∗ = Z∗Φ∗ + U∗, (17)

where U∗ = [U ′, u′d]′. In intuitive words, the augmented model combines the prior and the
likelihood of the data, therefore the posterior distribution will have the following form:

vec(Φ∗)|X,Σ ∼ N
(

Φ̂,Σ⊗
(
X∗

′
X∗
)−1

)
Σ|X ∼ iW (Σ̂, T ∗ + 1−Np), (18)

where Φ̂ =
(
Z∗
′
Z∗
)−1 (

Z∗
′
X∗
)

and Σ̂ = (Y ∗ −X∗Φ∗)′ (Y ∗ −X∗Φ∗).
As we can see from the artificial observations, the vector of hyperparameters, Λ =

[λ1, λ2, λ3] rules the behaviour of the prior, therefore an important issue to consider is its esti-
mation. Due to the nature of states and observable time series in the VAR, the marginal data
density (MDD) does not have a closed-form solution and therefore the methodologies for its
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optimisation are not available, e.g. Giannone et al. (2015), Chan et al. (2019). Schorfheide
and Song (2015) propose to approximate the MDD through the harmonic mean estimator
of Geweke (1999). Once they obtain the approximation, the optimal parameters can be
estimated over a grid. In this paper, we follow their approach. We show the considered grid
and the selected hyperparameters for the models considered here in appendix A.3.

2.3 Shock identification with sign restrictions

Our methodological contribution lies in the extension of the mixed-frequency BVAR of
Schorfheide and Song (2015) to a Structural model. Specifically, we link the reduced-form
model of equation (1) with the structural shocks, εt, as follows:

ut = Bεt, (19)

where B corresponds to the matrix of impact effects such that Σ = BB′. The identification
of structural shocks hinges in identifying the columns of matrix B. To do this, we rely
on an identification strategy based on sign restrictions. Specifically, we augment the Gibbs
Sampler algorithm of Schorfheide and Song (2015) and include a third block where we obtain
rotation matrices Q based on the methodology of Arias et al. (2018). We generate a draw
of the impact matrix as B = chol(Σ)Q and retain the draw that fulfils the sign restrictions.

3 A SVAR model for understanding the euro area labour
market

In this section we describe our baseline model, in which we include a set of variables with
the twofold purpose of (i) providing timely information for predicting future developments
of labour market variables and (ii) interpreting the developments according to economically
meaningful shocks. As we will describe in the next subsections, we exploit the role of labour
market flows to refine the shock identification and to disentangle the nature of more shocks
originating the labour market. Further, we will show that flows also help forecasting some
of the labour market variables.

3.1 Baseline model

We set up a BVAR model with the following variables: industrial production growth rate
(∆ipt), an index to identify the relative strength of the manufacturing relative to the ser-
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vice sector (which for simplicity we will call as MS index (mst))3, inflation (∆pt), wage
growth (∆wt measured by compensation per employee), unemployment rate (ut), employ-
ment growth (∆et), and job flows, specifically job finding (ft) and job separation rates (st).
A detailed description of the variables and of the transformations can be found in Appendix
A.1. The number of lags included in the estimation is equal to 4.

With this set of variables we aim at identifying six shocks, in particular two demand
shocks, domestic and foreign, a technology shock, and three shocks originated in the labour
market, a labour supply shock, a wage bargaining shock and a mismatch shock. The identi-
fication is obtained by means of sign restrictions.

We consider the following identification scheme, where all the restrictions are imposed
on impact:

Table 2: Identification scheme via sign restrictions - baseline model

Demand Supply Labour Market

Domestic Foreign Technology Labour Supply Mismatch Wage Bargaining

ut - - - - - -
∆ipt + + + - + +
∆pt + + - + /// -
∆wt /// /// + + + -
∆et /// /// /// /// /// ///
mst - + /// /// /// ///
ft + + + /// + ///
st - - - /// + ///

The sign + indicates a positive response of the variable on impact for that specified shock. The sign -
indicates a negative response. The sign /// indicates no restrictions.

A demand shock represents a shift in the demand curve, which pushes up output (in
our case industrial production) and inflation, while it lowers the unemployment rate. These
dynamics are consistent with the effects induced by monetary policy, government spend-
ing, marginal efficiency of investment, discount factor and most financial shocks. The MS
index helps us distinguishing between domestic and foreign demand shocks because when
the former hits the economy, the demand for non-tradable goods (services sector) is more
affected than the one of tradable goods (manufacturing) and hence MS<0. In the case of a
foreign demand shock, manufacturing is more affected than services and henceforth MS>0.

3The MS index is defined as the difference between the growth rates of the Purchasing Managers’ Index
(PMI) in Manufacturing and Services: MS = ∆ ln PMIM

t −∆ ln PMIS
t . We consider surveys instead of the

gross-value-added in both sectors since the former detects the impact of shocks in a more promptly than the
latter.
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Therefore, a domestic demand shock moves the MS index positively, while a global demand
shock negatively.

Following Mumtaz and Zanetti (2015), we further use the information of labour market
flows for the identification of neutral technology shocks. A neutral technology shock repre-
sents an increase in productivity which reduces the marginal costs for firms and therefore
pushes inflation down. The production expansion creates incentives for increasing hiring
which translates into a rise in job finding rate. Moreover, the rise in productivity makes
firms more willing to keep their employees which decreases the job separation rate. As a
consequence, the unemployment rate decreases. However, a positive technology shock also
creates a positive shift in the labour demand curve, which increases output and wage growth.

Both labour supply and wage bargaining shocks generate an inverse co-movement between
output and real wages (see Foroni et al. (2018a)). In the first case, an exogenous increase in
labour supply leads to an increase in the number of job seekers, makes it easier for firms to fill
vacancies and decreases hiring costs, thereby leading to a decrease in wages and prices and
to an increase in output and employment. In the second case, a reduction in the bargaining
power of workers has a direct negative effect on wages, thus contributing to lower marginal
costs and prices. Since firms now capture a larger share of the surplus associated with
employment relationships, they post more vacancies and increase employment. A positive
labour supply shock is an exogenous increase in labour supply, or a reduction in the disutility
of working, which increases the number of participants in the labour market. It is reasonable
to assume that at least some of the new participants will transit through unemployment for
the first quarter.

A negative wage bargaining (or wage mark-up) shock leads firms to capture a larger share
of the bargaining surplus. A reduction in the bargaining power of workers leads to a decline in
wages. It is now a very good moment for firms to hire and vacancy posting increases, leading
to a decrease in unemployment. Matching efficiency shocks can be interpreted as reallocation
shocks. In line with search and matching models with endogenous job destruction (see
Pissarides (2000)), an exogenous increase in mismatch efficiency shifts the job creation curve
outwards increasing the labour market tightness which pushes wages upwards. The increase
in efficiency makes it easier for workers to find a job and therefore the job finding rate
increases. The lower mismatch reduces the costs of firing people in order to get a better
match for the job which increases the job separation rate. Additionally, this shock shifts the
Beveridge curve inwards which translates into lower unemployment. For further detail see
Consolo and Da Silva (2019).
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3.2 Forecasting results

We evaluate the forecasting properties of the mixed-frequency BVAR for the labour market
in the euro area. In particular, we evaluate forecasts up to a year ahead for the real and
nominal labour market quarterly variables: compensation per employee growth, employment
growth rate and the in- and out-flows of unemployment4.

We estimate our model over the sample spanning from January 1998 to December 2019
and we carry out a pseudo real time forecasting exercise for the period from January 2010
to the end of the sample.5 At each forecasting step, we obtain 20000 draws and discard the
initial 10000. The dataset we consider is mixed-frequency and with ragged edges, given that
the series have different publication delays. For this exercise, we assume that we update
our data set on the tenth day of the month, such that we have the latest released figure
of the unemployment rate. Table 3 shows an example of the ragged-edge pattern within
the months of the quarter, where “x” means that the information is available whereas NaN
represent that the corresponding observation is missing. We split the flow of data into three
blocks: Beginning, middle and end. This is because for the case of the quarterly variables,
we divide the forecast evaluation into these groups, based on the information set available in
each month of the quarter when the forecast is computed. The first group corresponds to the
first month of the quarter (January, April, July, October, “beginning” later on), the second
to the months of February, May, July, November (“middle”) and the third, to March, June,
September and December (“end”). Forecasting horizons change according to the group. As
a clarifying example, if we are at the beginning of January, the forecast of the first quarter
corresponds to a 2 months ahead horizon, while if we are at the beginning of February, the
forecast of the first quarter corresponds to a 1 month ahead forecast and when we are in
March, the nowcast (horizon=0) correspond to the forecast of the first quarter.

4Additionally we include results for industrial production growth rate and inflation rate in appendix A.2.
5Given the ragged edge structure of the dataset, the last available realised values for the quarterly series

as dowloaded in May 2020 correspond to December 2019.
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Table 3: Data flow within quarters

Monthly variables Quarterly variables

ut ∆ipt ∆pt mst ∆wt ∆et ft st

Beginning

Sep/Q3 x x x x x x x x
Oct x x x x NaN NaN NaN NaN
Nov x NaN x x NaN NaN NaN NaN

Dec/Q4 NaN NaN NaN x NaN NaN NaN NaN
Jan NaN NaN NaN NaN NaN NaN NaN NaN

Middle

Oct x x x x x x x x
Nov x x x x NaN NaN NaN NaN

Dec/Q4 x NaN x x NaN NaN NaN NaN
Jan NaN NaN NaN x NaN NaN NaN NaN
Feb NaN NaN NaN NaN NaN NaN NaN NaN

End

Nov x x x x x x x x
Dec/Q4 x x x x x x NaN NaN

Jan x NaN x x NaN NaN NaN NaN
Feb NaN NaN NaN x NaN NaN NaN NaN
Mar NaN NaN NaN NaN NaN NaN NaN NaN

Results are reported in Table 4 and 5. In order to assess the importance of job flows for
forecasting we compute estimates from the benchmark model and a model without the flows.
In both tables we report the root mean square forecast error (RMSFE) of the model indicated
relative to the RMSFE of an AR process with the lag length selected according to the BIC
criterion. Therefore, whenever the number reported is smaller than one it indicates a superior
performance of the model relative to the AR. We additionally tested if the MFBVAR models
are significantly different against the AR model through a HLN test (Harvey et al. (1997)).
The numbers with (***) means that the null hypothesis of equal accuracy is rejected at 1%,
with (**) and (*) the null is rejected at 5% and 10% levels, respectively.

What we can see is that we obtain significant gains when predicting quarterly variables.
This is consistent with most of the evidence concerning mixed-frequency models. In particu-
lar, in the case of compensation per employee, the results show improvements at all horizons,
while for employment growth bigger gains are shown for the outer horizons. Further, in Table
4 we find some evidence that the more we obtain information during the quarter (moving
from “beginning” to “middle” and “end”) the better we are able to take advantage of this
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information and the improve over the benchmark.
We report results of the job finding and job separation rates in Table 5. The MFBVAR

model is more effective in forecasting the job separation rate, since their numbers are smaller
than the AR. However, for the job finding rate, considering the mixed frequency model
improve forecasts when we are in the last month of the quarter.

For completeness we report also the forecasting performance for the monthly unemploy-
ment rate. Although less commonly applied, it is possible to include quarterly information
to predict monthly variables, if the content contained in the lower frequency information
carries important information (see Foroni et al. (2018b)). In the case of unemployment rate
however, we do not obtain any gain in predicting it with mixed frequency information (See
table 6), relative to using a simple AR process. The reason lays most likely in the fact
that the unemployment rate is very persistent, therefore the information contained in the
last month available is dominating over the information included in other series which are
released with a bigger delay. In general though, we confirm the evidence in the literature
that the inclusion of flows improves the accuracy of short- and medium-term forecasts for
unemployment rate.

3.3 Economic interpretation

The advantage of our model is that it allows us to complement the nowcasting of labour
market variables with a timely interpretation of the underlying structural shocks. In this
way, we can extend the historical decomposition of labour market variables over the forecast
horizon and – from a nowcasting perspective – we can also better understand how our model
processes the marginal information from high-frequency data. In Figures 1 to 7 we report
the historical decomposition of the variables in our benchmark model, in deviations from
their mean.6

We summarize here the main economic findings. First, the model points at demand shocks
(internal and foreign) as the main factors explaining the dynamics of most of the variables
in the period of the Great Recession. In particular, the demand shocks were the drivers
of the large fall in industrial production and in inflation. In the labour markets, they also
contributed strongly to explain the developments in employment and unemployment rate.
During the period of the Great Recession, the role of foreign originated shocks is consistent
with the fact that this recession originates in the US first, and then spilled over to the euro
area. Second, looking at the period of low inflation starting in 2014, the role of shocks

6All figures report the mean of the posterior distribution of the historical decomposition. We do not
show the historical decomposition for the MS index, since this variable is included for identification purposes
only.
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originated in the labour markets (labour supply, bargaining power and mismatch) become
very important to explain both low inflation and low wage growth. In particular, the wage
bargaining and the mismatch shock play an important role for the labour market and inflation
dynamics. The wage bargaining shock reflects the overall effects on the labour market
stemming from reforms in labour market institutions implemented in the euro area following
the 2010 sovereign debt crisis. In our model, the wage bargaining shock captures both the
pure bargaining power of workers and their outside option. The latter has decreased both
for the effect of the crisis and also for the increased flexibility of labour market institutions
across some euro area countries (see Koenig et al. (2016)). The mismatch shock complements
the wage bargaining shock in explaining key labour market developments during the euro
area sovereign debt crisis, in line with a standard search and matching model à la Pissarides
(2000). According to Consolo and Da Silva (2019), the degree of labour market mismatch has
increased following the euro area sovereign debt crisis and that also visible in the outward
shift of the euro area Beveridge curve as of 2011. In our model, this is evident in the historical
decomposition of the job finding rate in Figure 14, which suggests a negative contribution
from job matching efficiency starting from 2011. Consistent with the search and matching
framework, higher mismatch in the labour market has led to lower wage growth over the
same period as visible in Figure 12. Our model thus provides additional evidence on the
drivers of low inflation in the euro area which is related to a shift in the wage bargaining
power of workers and an increase in labour market mismatch. As in Elsby et al. (2008),
the short-term dynamics of the unemployment rate is also driven by mismatch shock which
feature an important cyclical component.

3.4 Alternative model specifications

As a robustness to our results presented in Section 2 and 3, we explore potential richer alter-
natives to the baseline model. First in the view of improving the forecasting performance,
we add the PMI employment in the set of variables, with no additional restrictions to the
model. Second, we expand the identification scheme, by adding a monetary policy shock.
The identification is achieved by adding a measure of interest rate, in our case the 2 year
interest rate. Third, we identify a risk shock in the block of demand shocks, by adding a
variable of spread, defined as the difference between the ten-year and the two-year yield.

In general, these alternative models confirm the results described in the previous sec-
tions. Identifying more shocks do not penalize the forecasting performance, so it can be
an important way forward to get more economic insights. The inclusion of the PMI survey
data tends to be beneficial in terms of forecasts, confirming the importance of timely high-
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frequency information contained in the surveys. Identification schemes and detailed results
are available in an Online Appendix.

4 Conclusions

In this paper we developed a mixed-frequency structural VAR model, identified by sign
restrictions, with the purpose to understand the dynamics of the euro area labour market.
We obtain satisfactory results in terms of forecasting performance, especially for quarterly
variables as the employment and wage growth. For the monthly unemployment rate, it is
difficult to be an AR benchmark. All the results are aligned with the findings in the mixed-
frequency literature. In terms of economic interpretation, we find that demand shocks were
the main drivers during the past Great recession. Second, shocks originating in the labour
markets played an important role in explaining the period of low inflation from 2014 onward.
Finally, we exploited the information available in the labour market flows, and we found that
they contain useful information for the forecasts, and to provide a more detailed picture of
the euro area labour market.
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Table 4: Forecast evaluation: Quarterly variables

Compensation per employee (growth rate)

Benchmark No Flows

Horizon Beginning Middle End Beginning Middle End

Q(-1) 0.63∗∗ 0.69∗ 0.73 0.57∗∗

Q(0) 0.71∗∗ 0.69∗ 0.70 0.63∗∗ 0.61∗∗ 0.65∗

Q(+1) 0.81 0.75∗∗ 0.75∗∗ 0.79 0.80∗∗ 0.76∗∗

Q(+2) 0.82∗ 1.09 0.92 0.85∗ 0.97 0.83
Q(+3) 0.81 0.71∗ 0.97 0.74 0.85 0.80∗

Employment (growth rate)

Benchmark No Flows

Horizon Beginning Middle End Beginning Middle End

Q(-1) 1.88∗∗∗ 1.45∗∗∗− 1.64∗∗∗ 1.37∗∗

Q(0) 1.47∗∗ 1.28∗ 1.81∗∗∗ 1.34∗ 1.23 1.67∗∗∗

Q(+1) 0.85 1.03 1.57∗∗ 1.13 1.02 1.44∗

Q(+2) 0.73 0.75 1.02 1.40 1.10 1.51∗

Q(+3) 0.72 0.74 0.88 1.29 1.17 1.33

Note: The numbers in the table report the root mean square forecast error (RMSFE)
relative to an AR(p) model where the optimal number of lags was selected through
the BIC criterion. The bold number represent the best model between the benchmark
and the model with no flows. We test the corresponding MFBVAR against the AR(p)
model through a HLN test, the significance is presented as follows: 1% (***), 5% (**)
and 10% (*).
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Table 5: Forecast evaluation: Job flows

Job Finding Rate Job Separation Rate

Horizon Beginning Middle End Beginning Middle End

Q(-1) 1.36∗∗ 1.34 0.83 1.06 0.80 0.82
Q(0) 0.95 0.78 0.66∗∗ 0.72 0.59∗∗ 0.61∗∗

Q(+1) 0.98 0.85 0.61∗∗∗ 0.75 0.52∗∗ 0.53∗∗

Q(+2) 1.12 1.25 0.82 0.89 0.90 0.71
Q(+3) 1.14 1.21 0.85 0.78 0.87 0.67

Note: The numbers in the table report the root mean square forecast error
(RMSFE) relative to an AR(p) model where the optimal number of lags was se-
lected through the BIC criterion. We test the corresponding MFBVAR against the
AR(p) model through a HLN test, the significance is presented as follows: 1% (***),
5% (**) and 10% (*).
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Table 6: Forecast evaluation: Unemployment rate

Benchmark No Flows

Horizon Beginning Middle End Beginning Middle End

-1 1.60∗∗ 1.81∗∗∗ 2.03∗∗∗ 1.55∗∗ 1.76 ∗∗∗ 2.02∗∗∗

0 1.57∗∗ 2.04∗∗∗ 1.44∗∗∗ 1.50∗∗ 1.94∗∗∗ 1.39∗∗∗

1 1.93∗∗∗ 2.66∗∗∗ 1.65∗∗∗ 2.12∗∗∗ 2.97 ∗∗∗ 1.83∗∗∗

2 1.92∗∗∗ 2.21∗∗∗ 1.64∗∗∗ 2.13 ∗∗∗ 2.44 ∗∗∗ 1.78∗∗∗

3 1.76∗∗∗ 2.07∗∗∗ 1.53∗∗∗ 1.74∗∗∗ 2.09 ∗∗∗ 1.72∗∗∗

4 1.64∗∗∗ 1.98∗∗∗ 1.48∗∗∗ 1.65∗∗∗ 2.01∗∗∗ 1.62∗∗∗

5 1.57∗∗∗ 1.85∗∗∗ 1.38∗∗ 1.63∗∗∗ 1.88∗∗∗ 1.55∗∗∗

6 1.47∗∗∗ 1.77∗∗∗ 1.39∗ 1.50∗∗∗ 1.71∗∗∗ 1.48∗∗

7 1.37∗∗ 1.59∗∗∗ 1.32 1.44∗∗ 1.61 ∗∗∗ 1.36
8 1.33∗ 1.46∗∗ 1.26 1.35∗ 1.54∗∗∗ 1.28
9 1.27 1.40∗ 1.21 1.30 1.43∗∗∗ 1.19
10 1.22 1.31 1.16 1.21 1.34∗ 1.16
11 1.15 1.23 1.13 1.15 1.34 1.11
12 1.09 1.20 1.09 1.16 1.27 1.04

Note: The numbers in the table report the root mean square forecast error (RMSFE)
relative to an AR(p) model where the optimal number of lags was selected through
the BIC criterion. The bold number represent the best model between the benchmark
and the model with no flows. We test the corresponding MFBVAR against the AR(p)
model through a HLN test, the significance is presented as follows: 1% (***), 5% (**)
and 10% (*).
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Figure 1: Historical decomposition of unemployment rate (deviation from its mean)

Figure 2: Historical decomposition of Industrial Production (y-o-y rate, deviation from its
mean)
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Figure 3: Historical decomposition of Inflation (y-o-y rate, deviation from its mean)

Figure 4: Historical decomposition of Compensation per employee (y-o-y rate, deviation
from its mean)
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Figure 5: Historical decomposition of Employment (y-o-y rate, deviation from its mean)

Figure 6: Historical decomposition of job finding rate (deviation from its mean)
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Figure 7: Historical decomposition of job separation rate (deviation from its mean)
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A Appendix

A.1 Data description

Name Description Transformation Frequency

u Unemployment rate (as a % of labour force) Levels M
IP Industrial production for the euro area ∆ln(IP) M

HICP HICP - Overall index ∆ln(HICP) M
PMIm Purchasing Managers’ Index: Manufacturing ∆ln(PMIm) M
PMIs Purchasing Managers’ Index: Services ∆ln(PMIs) M

r Euro area 1-year Government Benchmark bond yield - Yield Levels M
slope Slope of the yield curve rt,10Y − rt,2Y Levels M

w Compensation per employee ∆ ln(w) Q
e Employment (in thousands of persons) ln(e) Q
f Job finding rate Levels Q
s Job separation rate Levels Q
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A.2 Forecast results for non-labour market variables

Table 7: Forecast evaluation: Industrial Production (growth rate)

Benchmark No Flows

Horizon Beginning Middle End Beginning Middle End

-2 1.04 1.11 1.13∗∗ 1.06 1.14 1.18∗∗

-1 1.13 1.04 1.02 1.12 1.01 1.04
0 1.09 1.02 1.23 1.12 1.04 1.29∗∗

+1 1.07 1.20∗∗ 1.14∗∗ 1.15 1.32∗∗∗ 1.13∗∗

+2 1.47∗∗ 1.00 1.05 1.65∗∗∗ 1.14 1.04
+3 1.23∗∗ 1.09 1.24 1.30∗∗∗ 1.24∗∗ 1.36∗

+4 1.17 1.29∗∗∗ 1.10 1.38∗∗∗ 1.38∗∗ 1.14
+5 1.38∗ 1.13∗ 1.11 1.49∗∗∗ 1.17 1.16∗∗∗

+6 1.19∗∗∗ 1.19 1.36 1.37∗ 1.26∗∗∗ 1.53∗

+7 1.19 1.20 1.15 1.45∗∗∗ 1.46 1.37∗∗

+8 1.34∗∗ 1.00 1.07 1.40∗∗∗ 1.21 1.04
+9 1.28∗ 1.10 1.36 1.35 1.36∗∗∗ 1.53
+10 1.10 1.30∗∗ 1.29∗∗ 1.22 1.78∗∗ 1.37∗

+11 1.25 1.07 1.10∗ 1.66∗∗∗ 1.37∗ 1.27∗∗

+12 1.30∗∗∗ 1.11 1.07 1.63∗∗∗ 1.49∗∗ 1.41

Note: The numbers in the table report the root mean square forecast error
(RMSFE) relative to an AR(p) model where the optimal number of lags was selected
through the BIC criterion. The bold number represent the best model between the
benchmark and the model with no flows. We test the corresponding MFBVAR
against the AR(p) model through a HLN test, the significance is presented as fol-
lows: 1% (***), 5% (**) and 10% (*).
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Table 8: Forecast evaluation: Inflation (m-o-m rate)

Benchmark No Flows

Horizon Beginning Middle End Beginning Middle End

-1 1.07 1.10∗ 0.97 1.06 1.08 0.95
0 1.04 1.07∗∗∗ 1.04 1.00 1.04 ∗∗ 1.00

+1 1.08 1.05 0.98 1.01 1.05∗ 0.94
+2 1.03 0.92 1.06 1.03 1.11∗∗ 1.11
+3 1.07 1.09∗ 1.03 1.01 0.97 1.11
+4 1.01 1.04 1.01 0.95 1.00 0.98
+5 1.02 0.99 1.11∗∗ 1.11 1.11 1.20
+6 1.10∗ 1.00 1.02 0.98 1.04 1.15∗∗

+7 1.11∗∗ 1.01 1.02 1.17∗∗ 1.12 1.14∗∗∗

+8 1.16∗ 0.98 1.07 1.09 1.19 1.21
+9 1.13 1.10∗∗ 1.16∗ 1.07 1.14∗ 1.16
+10 1.12 1.07 1.12∗ 1.09 1.18 1.15
+11 1.03 1.07 1.07 1.21 1.23∗∗∗ 0.99
+12 1.12 1.00 1.11∗ 0.93 1.10∗ 1.23

Note: The numbers in the table report the root mean square forecast error
(RMSFE) relative to an AR(p) model where the optimal number of lags was selected
through the BIC criterion. The bold number represent the best model between the
benchmark and the model with no flows. We test the corresponding MFBVAR
against the AR(p) model through a HLN test, the significance is presented as fol-
lows: 1% (***), 5% (**) and 10% (*).
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A.3 Results from MDD-hyperparameters optimisation

Following Schorfheide and Song (2015), we select the hyperparameters over a grid. We
consider the following grids:

Λ1 = [0.010 1.12 2.23 3.34 4.45 5.56 6.67 7.78 8.89 10]

Λ2 = [0.010 1.12 2.23 3.34 4.45 5.56 6.67 7.78 8.89 10]

Λ3 = [0.1 0.977 1.855 2.73 3.61 4.48 5.36 6.24 7.12 8]

Table 11 shows the constellation of hyperparameters that yield the maximum MDD for each
of the models considered.

Table 11: Optimal hyperparameters

Hyperparameters Benchmark +PMI +MP +Slope No flows

λ1 5.56 4.45 6.67 6.67 3.34
λ2 5.56 5.56 5.56 5.56 2.23
λ3 3.61 1.85 1.85 6.24 1.85
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B Online Appendix

B.1 Results of benchmark model plus PMI

Table 12: Identification scheme via sign restrictions - including survey model

Demand Supply Labour Market

Domestic Foreign Technology Labour Supply Mismatch Wage Bargaining

ut - - - - - -
∆ipt + + + - + +
∆pt + + - + /// -
∆wt /// /// + + + -
∆et /// /// /// /// /// ///
mst - + /// /// /// ///
ft + + + /// + ///
st - - - /// + ///

∆pmit /// /// /// /// /// ///

The sign + indicates a positive response of the variable on impact for that specified shock. The sign -

indicates a negative response. The sign /// indicates no restrictions.

Figure 8: Historical decomposition of unemployment rate (deviation from its mean)

Note: This graph shows the mean of the posterior distribution of the historical decomposition. This model

includes PMI-employment in the specification of the MFBVAR.
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Figure 9: Historical decomposition of Industrial Production (y-o-y rate, deviation from its
mean)

Note: See Fig. 8.

Figure 10: Historical decomposition of Inflation (y-o-y rate, deviation from its mean)

Note: See Fig. 8.
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Figure 11: Historical decomposition of PMI-employment (y-o-y rate, deviation from its
mean)

Note: See Fig. 8.

Figure 12: Historical decomposition of Compensation per employee (y-o-y rate, deviation
from its mean)

Note: See Fig. 8.
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Figure 13: Historical decomposition of Employment (y-o-y rate, deviation from its mean)

Note: See Fig. 8.

Figure 14: Historical decomposition of Job Finding Rate (y-o-y rate, deviation from its
mean)

Note: See Fig. 8.
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Figure 15: Historical decomposition of Job Separation Rate (y-o-y rate, deviation from its
mean)

Note: See Fig. 8.

40



B.2 Results from the model with a monetary policy shock

Table 13: Identification scheme via sign restrictions - with Monetary and Fiscal Policies

Demand Supply Labour Market

Fiscal Policy Monetary Policy Foreign Technology Labour Supply Mismatch Wage Bargaining

ut - - - - - - -
∆ipt + + + + - + +
∆pt + + + - + /// -
∆wt /// /// /// + + + -
∆et /// /// /// /// /// /// ///
mst - - + /// /// /// ///
ft + + + + /// + ///
st - - - - /// + ///
rt + - /// /// /// /// ///

The sign + indicates a positive response of the variable on impact for that specified shock. The sign -

indicates a negative response. The sign /// indicates no restrictions.

Figure 16: Historical decomposition of unemployment rate (deviation from its mean)

Note: This graph shows the mean of the posterior distribution of the historical decomposition. This model

includes a monetary policy shock in the identification of the MFBVAR.
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Figure 17: Historical decomposition of Industrial Production (y-o-y rate, deviation from its
mean)

Note: See Fig. 16.

Figure 18: Historical decomposition of Inflation (y-o-y rate, deviation from its mean)

Note: See Fig. 16.
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Figure 19: Historical decomposition of Compensation per employee (y-o-y rate, deviation
from its mean)

Note: See Fig. 16.

Figure 20: Historical decomposition of Employment (y-o-y rate, deviation from its mean)

Note: See Fig. 16.
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Figure 21: Historical decomposition of job finding rate (deviation from its mean)

Note: See Fig. 16.

Figure 22: Historical decomposition of job separation rate (deviation from its mean)

Note: See Fig. 16.
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Figure 23: Historical decomposition of the slope of the yield curve (deviation from its mean)

Note: See Fig. 16.
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B.3 Results from a model with a risk premium shock

Table 14: Identification scheme via sign restrictions - with a Risk shock

Demand Supply Labour Market

Domestic Risk Foreign Technology Labour Supply Mismatch Wage Bargaining

ut - - - - - - -
∆ipt + + + + - + +
∆pt + + + - + /// -
∆wt /// /// /// + + + -
∆et /// /// /// /// /// /// ///
mst - - + /// /// /// ///
ft + + + + /// + ///
st - - - - /// + ///

slopet - + /// /// /// /// ///

The sign + indicates a positive response of the variable on impact for that specified shock. The sign -

indicates a negative response. The sign /// indicates no restrictions.

Figure 24: Historical decomposition of unemployment rate (deviation from its mean)

Note: this graph shows the mean of the posterior distribution of the historical decomposition. This model

includes a risk premium shock in the identification of the MFBVAR.

46



Figure 25: Historical decomposition of Industrial Production (y-o-y rate, deviation from its
mean)

Note: See Fig. 24.

Figure 26: Historical decomposition of Inflation (y-o-y rate, deviation from its mean)

Note: See Fig. 24.
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Figure 27: Historical decomposition of Compensation per employee (y-o-y rate, deviation
from its mean)

Note: See Fig. 24.

Figure 28: Historical decomposition of Employment (y-o-y rate, deviation from its mean)

Note: See Fig. 24.
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Figure 29: Historical decomposition of job finding rate (deviation from its mean)

Note: See Fig. 24.

Figure 30: Historical decomposition of job separation rate (deviation from its mean)

Note: See Fig. 24.
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Figure 31: Historical decomposition of the slope of the yield curve (deviation from its mean)

Note: See Fig. 24.
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B.4 Forecasting results from alternative models

Table 15: Data flow within quarters

Monthly variables Quarterly variables

ut ∆ipt ∆pt mst PMIt rt slopet ∆wt ∆et ft st

Beginning

Sep/Q3 x x x x x x x x x x x
Oct x x x x x x x NaN NaN NaN NaN
Nov x NaN x x x x x NaN NaN NaN NaN

Dec/Q4 NaN NaN NaN x x x x NaN NaN NaN NaN
Jan NaN NaN NaN NaN NaN x x NaN NaN NaN NaN

Middle

Oct x x x x x x x x x x x
Nov x x x x x x x NaN NaN NaN NaN

Dec/Q4 x NaN x x x x x NaN NaN NaN NaN
Jan NaN NaN NaN x x x x NaN NaN NaN NaN
Feb NaN NaN NaN NaN NaN x x NaN NaN NaN NaN

End

Nov x x x x x x x x x x x
Dec/Q4 x x x x x x x x x NaN NaN

Jan x NaN x x x x x NaN NaN NaN NaN
Feb NaN NaN NaN x x x x NaN NaN NaN NaN
Mar NaN NaN NaN NaN NaN x x NaN NaN NaN NaN

We stack the RMSFE for all models in table 16 for labour market quarterly variables (in-
cluding flows) and table 17 shows the results for the monthly variables.
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