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Abstract

Poverty and mortality are arguably the two major sources of well-being

losses. Most mainstream measures of human development capturing these two

dimensions aggregate them in an ad-hoc and controversial way. In this paper,

we propose a new indicator aggregating the poverty and the mortality observed

in a given period, which we call the poverty-adjusted life-expectancy (PALE).

This indicator is based on a single normative parameter that transparently

captures the trade-off between well-being losses from being poor or from being

dead. We first show that PALE follows naturally from the expected life-cycle

utility approach a la Harsanyi (1953). Empirically, we then proceed to between

countries or across time comparisons and focus on those situations in which

poverty and mortality provide conflicting evaluations. Once we assume that

being poor is (at least weakly) preferable to being dead, we show that about a

third of these conflicting comparisons can be unambiguously ranked by PALE.

Finally, we show that our index naturally defines a new and simple index of

multidimensional poverty, the expected deprivation index, which aggregates

poverty and premature mortality in a consistent way.
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1 Introduction

There is a long-standing tradition looking for an indicator able to track the level

of human development in a society (Hicks and Streeten, 1979; Stiglitz et al., 2009;

Fleurbaey, 2009). By measuring well-being in a given period, this measure would

allow comparisons of human development across countries and across time. For

this purpose, simple monetary measures, such as GDP per head, have been heavily

criticized, essentially on two accounts.1 First, income aggregates such as GDP are

typically blind to the distribution of consumption across the population. This dis-

tributional concern has lead to the design and adoption of income poverty measures

(see, e.g., World Bank (2015)). Second, key aspects of human well-being, such as

health or education, are virtually impossible to translate into monetary values. As a

result, monetary measures do not provide a sufficient informational basis to account

for the multi-dimensional nature of human development. This multi-dimensional con-

cern has lead to the adoption of dashboards of indicators, such as the 17 Sustainable

Development Goals (SDG) adopted in 2015 by the UN.

Given these limitations, many authors proposed several ways to aggregate dif-

ferent dimensions of well-being into a single indicator of human development that

could be readily applied, for instance to assess a country’s performance at promoting

well-being or to evaluate policies that imply trade-offs between different dimensions,

e.g. safety regulations, environmental or health related policies. Among these in-

dicators, one finds the Human Development Index (HDI) (UNDP, 1990), the Level

of Living Index (Drewnowski and Scott, 1966) or the Physical Quality of Life Index

(Morris, 1978). Echoing the distributional concern, some of them focus on depri-

vations, like the Global Multidimensional Poverty Index (Alkire et al., 2015) or the

Human Poverty Index (Watkins, 2006). These summary measures provide a rough

yardstick of human development, which is arguably easier to communicate than a

full list of various indicators. Crucially, they have the potential to solve the partial

ranking of societies yielded by a dashboard of indicators, when one society performs

better along one dimension than another society but not along another. A dashboard

cannot compare two societies when two or more dimensions are “in conflict”.

All these composite indices are subject to the same fundamental criticisms (Raval-

lion, 2011a,b; Ghislandi et al., 2019). First, the selection of the appropriate indicator

in each dimension and the choice of the aggregation function are often arbitrary and

they do not follow from a defensible notion of individual well-being. Second, the

system of weights embedded in the aggregation function is itself often arbitrarily

selected, for instance by giving an equal weight to each dimension. Such weights are

therefore not related to the trade-offs that individuals would make between these

dimensions, and cannot be taken as representative of human well-being.2 Together,

these critics are devastating. Indeed, the full ranking of societies yielded by composite

indices is of little value if the trade-off they make between “conflicting” dimensions is

not meaningful or arbitrary. Finally, the value of a summary indicator also depends

on how quickly it can be grasped. Unfortunately, these indicators, originally con-

ceived as pragmatic ordinal indicators, do not typically offer a simple interpretation,

1Another important critic relates to sustainability of the well-being achieved in a particular
period.

2More fundamentally, different individuals may make different trade-offs, which implies that no
system of weights can be completely consensual.
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that can be easily communicated.

These critics are so compelling that a number of scholars argue in favor of reducing

the informational basis to a unique dimension, such as health (Hicks and Streeten,

1979), thereby avoiding the need to choose a particular aggregation process. Among

health indicators, a prominent and easily interpretable indicator is the life-expectancy

at birth, which can also be adapted in order to account for the distributional concern

(Silber, 1983; Ghislandi et al., 2019; Gisbert, 2020). According to these authors, the

cost of reducing the number of dimensions accounted for might not be that high,

as not all dimensions carry the same importance for human well-being. Moreover,

some dimensions can be considered mostly as “inputs” for well-being, rather than

“outcomes”. For instance, sanitation may be considered as an input in some health

production function.

In this paper, we propose to measure human well-being using the poverty-adjusted

life-expectancy (PALE), a new summary index that aggregates well-being losses re-

sulting from the poverty and mortality observed in a given period. This summary

index makes substantial progress on the criticisms identified above. First, the aggre-

gation of poverty and mortality is normatively grounded on the expected life-cycle

utility, the measure of social welfare proposed by Harsanyi (1953). Second, even

though our index relies on some weight, we show that the index improves on the par-

tial ranking yielded by the separate dimensions, as long as one considers that being

poor is not worse than being dead. Under this assumption, some pairs of societies are

unambiguously compared by our index, even when the two dimensions are “in con-

flict”, for instance if one society has less poverty but higher mortality than the other.

A necessary and sufficient condition for unambiguous comparisons is that the index

makes the same comparison for the two extreme values for its weight. Third, the

interpretation of our index under these two extreme values is straightforward. Under

one extreme value, our indicator is the life-expectancy at birth. Under the other ex-

treme value, our indicator is the poverty-free life-expectancy at birth (Riumallo-Herl

et al., 2018), i.e. it is the number of years of life that a newborn expects to live out

of poverty, if she assumes poverty and mortality remain constant over time.

There are good reasons to focus on poverty and mortality when measuring human

development. First, poverty and mortality are arguably the two major sources of

welfare losses: poverty entails welfare losses by reducing the quality of life while

mortality entails welfare losses by reducing the quantity of life. Prominent scholars

in welfare economics such as Deaton and Sen have dedicated a large part of their work

to the study of poverty and mortality (Deaton, 2013; Sen, 1998). Unsurprisingly, the

first two Sustainable Development Goals of the UN are directly related to poverty

while the third one refers to mortality.3 Second, focussing on poverty and mortality

naturally reflects distributional concerns as they are the worst possible outcomes

associated with consumption and health. Finally, note that the poverty status we

consider here could also be a measure resulting from some aggregation of different

dimensions of the quality of life.

Our index is based on a simplified version of social welfare a la Harsanyi (1953).

According to Harsanyi, social welfare in a given period can be understood as the

life-cycle utility expected by a newborn when drawing at random a life that re-

3The first two SDGs are entitled “No Poverty” and “Zero Hunger”, while the majority of the
indicators in the third “Good Health and Well-being” section refer to some form of mortality.
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flects the outcomes observed in that particular period. Our main simplification is

to consider a binary quality of life: in any period, an individual is either poor or

non-poor.4 In this context, life-cycle utility is the sum of period utilities over the

lifespan, where period utility takes two values, one high when non-poor and one low

when poor. Our index therefore normalizes the expected life-cycle utility when one

expects, throughout her lifetime, to be confronted to the poverty and mortality pre-

vailing in the current period. We call this index “poverty-adjusted life-expectancy”,

because in such stationary society, this index simply counts the number of periods

that a newborn expects to live but weighs down the periods that she expects to live

in poverty. Mathematically, our index is obtained by multiplying life-expectancy at

birth by a factor one minus the fraction of poor, where the fraction of poor is weighed

down. This (normative) weight, the value of which lies between zero and one, cor-

responds to the fraction of the period utility lost when poor. When being poor has

no utility cost, this weight takes the value zero. When being poor is as bad as losing

one year of life, this weight takes the value one. As we make clear later, our index is

not a projection or a forecast of the average life-cycle utility of the cohort born in a

particular period, implying that it cannot in general be interpreted as the expected

life-cycle utility of a newborn, unless the society is stationary. However, even when

mortality is selective and affects predominantly poor people, we also show that our

index still constitutes a meaningful way to aggregate the two sources of welfare losses

observed in a particular period.

Our index improves on the partial ranking provided by a dashboard considering

poverty and mortality separately. More precisely, there are pairs of societies that

cannot be compared using a dashboard, while our index provides the same strict

comparison for all plausible values of its weight. For instance, consider two societies

A and B where B has a higher fraction of poor but a higher life-expectancy at birth,

i.e. lower mortality. Suppose that the situation is such that one may expect to

spend more periods in poverty in B than in A but also more periods out of poverty

in B than in A, as people live longer in society B. It is easy to show that life-cycle

utility is larger in B, regardless of the weight given to periods of poverty, because

individuals on average live more periods of both types in B. Hence, provided that

being poor is not worse than being dead, our index unambiguously ranks A and B,

which a dashboard approach is unable to do. As a result, our index increases the set

of pairs of societies that can be unambiguously compared.

Empirically, we combine datasets provided by the World Bank data on income

poverty (PovCalNet) and internationally comparable dataset on mortality data (the

Global Burden of Disease) from 1990 to 2015. Again assuming that one year spent

in poverty is (weakly) preferred to one year of life lost, we show that PALE is able

to solve a non-trivial number of ambiguous comparisons across time or between

countries. For instance, when comparing all possible pair of countries in each year,

across all years, there are about 21 percent of such comparisons for which mortality

and poverty move in opposite directions. Out of these ambiguous cases, PALE is

able to solve 33 percent of them. We also investigate the evolution of each country

in the dataset, by comparing the situation in a particular year to that prevailing five

4Clearly, we do not claim that our index is superior to Harsanyi’s approach, but it is a plausible
measure of expected life-cycle utility when poverty is considered to be the main factor reducing the
quality of life.
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years earlier. We find that, out of 28 percent of ambiguous comparisons, PALE is

able to solve 38 percent of them.

Finally, we propose an adapted version of our index that explicitly addresses

distributional concerns about unequal lifespans. We define a new indicator of mul-

tidimensional poverty that captures deprivations in the quality and quantity of life.

If being deprived in the quality of life can be equated to being poor, being deprived

in the quantity of life requires the introduction of a normative age threshold below

which one is considered as deprived, i.e. a definition of premature mortality. This

new index, which we call the expected deprivation index (ED), is a weighted sum

of the number of years that a newborn expect to loose prematurely and the num-

ber of years she expects to spend in poverty, using the same weight as in PALE.

(Again, these expectations assume that the newborn is confronted throughout her

lifespan to the poverty and mortality observed in the current period.) We show that

this index also increases the set of pairs that can be unambiguously compared when

considering the dimensions separately. In its spirit, ED is similar to the Generated

Deprivation index recently proposed by Baland et al. (2021), and they are in fact

equal in stationary societies. We show that ED is more reactive to contemporaneous

policies (e.g. in the case of permanent mortality shocks). Moreover, ED is less data

demanding and subject to a simpler interpretation than Generated Deprivation.

This research thus contributes to the literature on human development measures

by proposing a multidimensional indicator that focusses on the worst possible out-

comes. The novelty is to define a multidimensional index of well-being in a given

period that (i) captures the two main sources of welfare losses, (ii) aggregates differ-

ent dimensions in a theoretically sound way, (iii) provides a robust ranking for a set

of comparisons for which its two dimensions conflict, (iv) has a direct and intuitive

interpretation and (v) can readily be applied to the available data. Moreover, we

show that the PALE index is related to a new index of multidimensional poverty,

Expected Deprivation, that enjoys the same advantages and can complement PALE

if one is concerned with unequal lifespans.

The poverty-adjusted life-expectancy is reminiscent of several indicators proposed

in health economics, like the quality-adjusted life-expectancy (QALE) or the quality-

adjusted life year (QALY).5 Both account for the quality and quantity of life, by

weighting down the quantity of life for periods with low quality. They have been

developed following the method of Sullivan (1971) and we show that these approaches

directly follow from the expected life-cycle utility approach in stationary societies.

Our index however accounts for another important dimension of well-being than

health, which is poverty. Also, PALE takes advantage of the existence of the well-

established concept of a poverty threshold, which splits the population into poor

and non-poor, thereby transforming the quality of life into a binary variable. This

transformation is key to the simple interpretation of our index. There is, to the best

of our knowledge, no immediate equivalent of such threshold in health economics.

There exist other indicators of a society’s well-being which are, in theory, arguably

much superior to ours. Yet, these indicators either rely on techniques that are not

mature yet, require many arbitrary assumptions or cannot be readily applied for

5See for instance Whitehead and Ali (2010) for an economic interpretation of QALYs, or Heijink
et al. (2011); Jia et al. (2011) for applications of the QALE index to comparisons of health outcomes
across populations.
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all countries using existing data. For instance, Becker et al. (2005) and Jones and

Klenow (2016) follow more sophisticated versions of Harsanyi’s expected life-cycle

utility approach. Alternatively, Fleurbaey and Tadenuma (2014), in the case of well-

being, or Decancq et al. (2019), for poverty, propose to aggregate different dimensions

using individual preferences.6 Also, there is a large litterature investigating the

weights to be given to different dimensions of well-being (Benjamin et al., 2014;

Decancq and Lugo, 2013). However, this literature has not reached full maturity, or

cannot be applied on a large scale due to data constraints.

The remainder of the paper is organized as follows. In Section 2, we present

the theory supporting our PALE index and provide some empirical implications.

In Section 3, we present the theory supporting our ED index; We provide some

concluding comments in Section 4.

2 A transparent index of welfare

Our objective is to propose a simple indicator allowing to measure and compare the

level of human development of different societies in a given period. In particular, we

would like this indicator to aggregate two major sources of welfare losses: mortality

– which reduces the quantity of life – and poverty – which reduces the quality of life –

occuring during that period. This aggregation should follow from the way individuals

aggregate these losses and therefore be related to life-cycle preferences.

The rationality requirements of decision theory provide a structure on admissi-

ble life-cycle preferences. Rational preferences over streams of consumption have

been axiomatized by Koopmans (1960) and later generalized by Bleichrodt et al.

(2008). Such preferences must be represented by a discounted utility function, which

aggregates these streams as a discounted sum of period utilities

U =
d∑

a=0

βau(ca) (1)

where d ∈ N is the age at death, β ∈ [0, 1] is the discount factor, ca is consumption

at age a and u is the period utility function.

Building on this representation of preferences, Harsanyi (1953) proposes to mea-

sure the welfare of a society by aggregating life-cycle utilities over the whole society.

According to Harsanyi (1953), behind the veil of ignorance, each newborn faces a

lottery whereby she ignores whether she will be poor and for how long, or whether

she will be the victim of a premature death. When evaluating her life-cycle utility,

she considers drawing at random the life of any individual in that society. Following

the formulation of Jones and Klenow (2016), her expected life-cycle utility is given

by

EU = E

a∗−1∑

a=0

βau(ca)S(a), (2)

where S(a) is the (unconditional) probability that the newborn survives to age a,

a∗ is the maximal lifespan one can reach and the expectation operator E applies to

the uncertainty with respect to consumption ca. The period utility when being dead

6The limits of these different approaches are reviewed in Fleurbaey (2009).
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is normalized to zero. As a result, mortality is valued through its opportunity cost:

death reduces the number of periods during which a newborn expects to consume.

Although this approach has solid theoretical foundations, it does not seem that

the indicator defined by Eq. (2) could be directly used as a summary measure of

human development. Indeed, this indicator first requires the choice of a particular

mathematical expression for the period utility function u. Moreover, the trade-off

that this indicator makes between the quantity and quality of life, which depends

on the definition of u, remains relatively obscure. And, finally, this indicator, being

expressed in utility-units, does not lend itself to a direct interpretation.

2.1 The PALE index

In order to improve on these issues, we consider two assumptions that simplify Eq.

(2) into a simple index of human development.

Our first simplifying assumption is to ignore discounting, i.e. take β = 1. We

argue that such assumption is necessary in order to assign equal weights to all in-

dividuals, regardless of their age. Indeed, Eq. (2) equates a society’s welfare in

a given period to the expected life-cycle utility of individuals born in that period.

Clearly, the expected life-cycle utility of newborns is related to the society’s welfare

in a given period only when one assumes that their expected lives reflect at each

age the outcomes observed for individuals of that age during the period considered.

When discounting with a factor less than one, we give less weight to the outcomes

of older individuals. As a result, to give the same weight to individuals of different

ages implies β = 1.

Our second simplifying assumption is to transform consumption into a binary

variable, i.e. ca can be either being non-poor (NP ) or being poor (P ). This is

obviously a strong assumption because we ignore the impact on period utility of

consumption differences inside these two categories. However, we argue that this

assumption reflects the distributional concern, i.e. the desire to evaluate a society’s

development by focussing on the fate of its least well-off individuals. We believe this

assumption is the price to pay when one wishes to focus on poverty as the main

source of welfare losses, rather than other more general determinants of the quality

of life.7

Taken jointly, these two assumptions require the use of a simple indicator, which

we call the poverty-adjusted life-expectancy (PALE). Our second assumption implies

Eu(ca) = π(a)uP + (1− π(a))uNP where uNP = u(NP ), uP = u(P ) and π(a) is the

probability to be poor at age a conditional on being alive at age a. As, by definition,

life-expectancy at birth is LE =
∑a∗−1

a=0 S(a), we can rewrite Eq. (2) as

EU = uNPLE − (uNP − uP )
a∗−1∑

a=0

S(a)π(a). (3)

In Section 2.3, we derive a result showing that these two assumptions are suffi-

cient to define PALE when aggregating the welfare losses coming from poverty and

mortality in a given period. Here we provide a simple illustration showing how these

7This assumption is also used by Decerf et al. (2020) in a study of the poverty and mortality
effects of the Covid-19 pandemic. These authors compare the relative sizes of poverty and mortality
shocks, whereas we derive here an indicator of well-being.
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two assumptions naturally lead to our index under a third assumption of “indepen-

dence”. Let us assume that the conditional probability of being poor at each age

a is a constant equal to the fraction of poor in the population, i.e. π(a) = H for

all a ∈ {0, . . . , a∗ − 1} where H is the head-count ratio. Clearly, this independence

assumption does not hold when mortality is selective, for instance when the poor die

younger than the non-poor. We discuss this limitation in more details in Section 2.3.

Under this assumption, we can normalize Eq. (3) as

EU

uNP

= LE

(

1−
uNP − uP

uNP
︸ ︷︷ ︸

θ

H

)

.

This last expression defines the poverty-adjusted life-expectancy index:

PALEθ = LE(1− θH). (4)

The parameter θ ∈ [0, 1] captures the fraction of period utility lost when a non-poor

individual becomes poor in a given period.8 Importantly, this parameter directly

captures the trade-off between poverty and mortality. Indeed, as the period utility

of being dead uD is normalized to zero, we have 1
θ
= uNP−uD

uNP−uP
. Hence, the ratio

1
θ

measures, for a non-poor individual, the number of periods in poverty that are

equivalent to being dead for one period.

PALE has a simple expression: its first factor measures life-expectancy, whereas

its second factor captures the fall in the quality of life due to poverty. This reduction

depends on the value assigned to the parameter θ. When θ = 0, that is becoming poor

does not affect the quality of life, PALE reduces to life-expectancy at birth. When

θ = 1, that is becoming poor brings the quality of life to zero, PALE still depends on

life-expectancy. In this particular case, PALE corresponds to the Poverty Free Life

Expectancy (PFLE), an indicator proposed by Riumallo-Herl et al. (2018),9 which

measures the number of years that an individual expects to live free from poverty,

when confronted throughout her life to the poverty and mortality observed in the

period. For other values for θ, PALE corresponds to the number of years of life free

from poverty that provides the same life-cycle utility as that expected by a newborn

(when assuming again that poverty and mortality remain constant).

PALE aggregates a measure of mortality, LE, with a measure of poverty, H , in

a way consistent with life-cycle preferences. This is a progress over most composite

indices, but PALE also relies on a normative parameter that weights these two di-

mensions. Thus, one may wonder whether aggregating the two component indices is

very useful given that there is a priori no consensus on the value that this parameter

should take. Indeed, the welfare comparison of two societies based on PALE may de-

pend on the particular value assigned to the parameter θ. Fortunately, we show that

some of these comparisons do not depend on the parameter’s value, even for some

8By the monotonicity of the period utility function we have uNP ≥ uP . Assuming that being
poor is no worse than being dead we have uP ≥ 0. Together, this implies that θ ∈ [0, 1].

9Riumallo-Herl et al. (2018) do not relate their PFLE index to a formal notion of social welfare.
As our theory makes clear, the PFLE index reflects an extreme view on the trade-off between
poverty and mortality, namely that being poor is as bad as being dead. One key difference between
our work and Riumallo-Herl et al. (2018) is that, through our formal framework, we can derive a
series of results, e.g. on the possibility to sometimes resolve “conflicting” situations, on the validity
of the aggregation even when mortality is selective or on the possibility to apply this aggregation
to multidimensional deprivation indices.
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pairs not related by domination. That is, there exist pairs of societies for which one

has larger poverty and the other larger mortality that are unambiguously ranked by

PALE. Hence, the structure of expected life-cycle utility sometimes allows to extend

unambiguous comparisons beyond those associated to domination.

We illustrate this graphically in Figure 1. Without aggregation, domination alone

allows comparing society A with the NW quadrant (where societies have more poverty

and more mortality) and the SE quadrant (where societies have less poverty and less

mortality). For any value of θ, we can draw the iso-PALEθ curves passing through

A. The iso-PALE0 curve (associated to θ = 0) is a vertical line because this value

encapsulates the view that poverty has no welfare costs. However, the iso-PALE1

curve (associated to θ = 1) is not a horizontal line. As a result, two additional areas

for which welfare can be unambiguously compared with that of society A. This is

because the iso-PALEθ curves (associated to intermediate values of θ ∈ [0, 1]) all

lie in the area between the iso-PALE0 curve and the iso-PALE1 curve. The area in

the NE quadrant below the iso-PALE1 curve yields an unambiguously higher welfare

than A. The area in the SW quadrant above the iso-PALE1 yields an unambiguously

lower welfare than A. The size of these new areas depends on the marginal rate

of substitution of PALE1 at A. If LE(A) = 70 and H(A) = 20, this marginal

rate of substitution is equal to 0.011, meaning that one additional year is exactly

compensated by an increase in H of 1.1% percentage points.10

LE
0

LE(A)

H(A)
bB

A

θ = 1

θ = 0

0 < θ < 1

Dominates A
Smaller EU
than A

Larger EU
than A

b

Dominated by A

H

1

Figure 1: A simplified version of Harsanyi’s expected life-cycle utility approach
increases unambiguous comparisons.

We now provide some intuition for these additional unambiguous comparisons.

They follow from (i) the fact that expected life-cycle utility sums period utilities

and (ii) the assumption that a period in poverty is not worse than a period lost (i.e.

uP ≥ uD). For simplicity let us compare the life-cycle utility of two individuals iA

and iB, who respectively live in societies A and B depicted in Figure 1. Assume that

the larger poverty and smaller mortality of society B is such that the life of iB has

more periods in poverty than that of iA, and the life of iB also has more periods out of

poverty than that of iA. As both types of period are positively valued (ii), the value

10For society A and PALE1, this marginal rate of substitution is given by
LE(A)(1−H(A))

(LE(A))2
.

9



selected for the weight does not matter anymore. Indeed, iB has a larger expected

life-cycle utility because her life has more periods in each consumption status than

the life of iA.

Proposition 1 provides the conditions under which we can unambiguously com-

pare two societies with PALE, even when they are not related by domination. The

comparison is unambiguous as long as the PALE indices agree for θ = 0 and θ = 1.

Proposition 1 (Unambiguous comparisons of welfare).

For any two societies A and B, we have PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1]

if and only if LE(A) < LE(B) and PALE1(A) < PALE1(B).

There exist societies A and B with H(A) < H(B) such that PALEθ(A) <

PALEθ(B) for all θ ∈ [0, 1].

Proof. See Appendix 5.1 for the straightforward proof.

2.2 Applications of PALE

The data on population and mortality by country, age group and year comes from

the Global Burden of Disease database (2015 version of the data). Comparable

information across countries and over time is available for the 1990-2015 period and is,

to our knowledge, the most comprehensive mortality data available for international

comparison.11 Data on alive deprivation come from the PovcalNet website which

provides internationally comparable estimates of income deprivation level. This data

set is based on income and consumption data from more than 850 representative

surveys carried out in 127 low- and middle-income countries between 1981 and 2015.12

In our empirical application, we follow the World Bank’s definition of extreme income

deprivation, corresponding to the $1.9 a day threshold (Ferreira et al., 2016). We

merged the two databases at the year and country level. Since the Global Burden of

the Disease data are only available since 1990 and the PovCalNet data until 2015, we

focus on the 1990-2015 period for a total of 113 low- and middle-income countries.

We quantify the gain that the use of the PALE index provides over the use

of a dashboard of two separate indicators (LE and H). To do this, we quantify

the frequence of situations for which the two indicators are “in conflict” and the

percentage of these “conflicted” situations that are unambiguously ranked by PALE.

Recall that we assume that the maximal value for the weight θ is equal to one.

This is the most conservative approach consistent with the idea that being poor is

weakly preferable to being dead. Indeed, θ=1 implies that one person-year spent

in poverty is considered equivalent to one person-year prematurely lost. Choosing a

lower maximal value for θ, by decreasing the maximal weight that can be given to

11To construct this database, population and mortality data are systematically recorded across
countries and time from various data sources (official vital statistics data, fertility history data
as well as data sources compiling deaths from catastrophic events). These primary data are then
converted into data in five years age groups, at year and country level using various interpolations
and inference methods (see Global Burden of Disease Collaborative Network (2018) and University
of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany)
(2019) for more information on the GBD data construction). Following the literature, we only
consider the point estimate in the number of deaths (see also Hoyland et al. (2012) for a critique of
this approach).

12The website address is http://iresearch.worldbank.org/PovcalNet/povOnDemand.aspx. Each
country’s income deprivation level in PovCalNet is computed on a three year basis, and yearly data
are obtained by linear interpolation. A complete description of the data set is given in Chen and
Ravallion (2013).
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the poverty component, would simply increase the number of situations that we can

unambiguously compare with PALE.

We first present an empirical version of Figure 1 above by comparing the situa-

tions of different countries in 1990 and 2015. The resulting diagram is presented in

Figure 2 below. The point of reference (point A in Figure 1) chosen for this diagram

is defined as a hypothetical reference country with a median head count ratio and a

median life-expectancy at birth, which corresponds roughly to the situation of South

Africa in 1990 an Nepal in 2015. Based on the maximal value θ equal to one, the iso-

PALE1 curve is represented by the dotted curve. All countries below this iso-PALE1

curve have a larger PALE1 value than the reference country. Among these, some

countries, located in the north west quadrant, are obviously better off, with a larger

life-expectancy and lower poverty levels. Others, located in the south east quadrant,

are unambiguously worse off. In the other two quadrants, there are a significant

number of countries for which the evolution of life-expectancy and poverty go in

opposite directions. Among these, those represented by shaded triangles correspond

to situations in which the comparison by PALEθ is unambiguous. In the north-east

quadrant, these shaded triangles signal that PALEθ is unambiguously larger, as the

higher poverty is compensated for by the lower mortality. In the south-west quad-

rant, these shaded triangles signal that PALEθ is unambiguously smaller, as the

lower poverty cannot compensate for the higher mortality. Countries represented by

a small dots are countries we cannot rank (as the comparison depends on the chosen

value given to θ).

Figure 3 replicates this exercice by comparing all pairs of countries for each year

between 1990 and 2015, and reports, among all these comparisons, the proportion of

cases which are ambiguous, and the share of these ambiguous cases for which PALE

provides a unambiguous answer. Out of an average of 21 percent of ambiguous

comparisons, PALE is able to solve one third of them. Note how the share of solved

comparisons is increasing over time.

In the next figure 4, we provide PALE comparisons between present and past

situations within countries. More precisely, for each year, we compare the situation

in period t to the situation prevailing in the same country five years earlier. In order

to represent graphically the situations for which PALE provides an unambiguous

answer, we again need to represent the curve for which PALE1 stays constant over

time. By definition, PALE1 = LE (1-HC), and thus PALE1 increases if and only if

dLE/LE > d(1-HC)/(1-HC). This simple expression allows us to contruct a figure in

the (dLE/LE, d(1-HC)/(1-HC)) plan, in which the rate of growth of LE is measured

on the horizontal axis, and that of (1-HC), which we refer to as the “percentage

of non-poor” growth, on the vertical axis.13 The expression above defines a “zero-

growth PALE1” curve, which represents all the combinations of the two rates of

growth such that PALE1 remains unchanged. Above this curve, PALE1 increases,

below this curve PALE1 decreases. A priori, in a simple approach, we cannot judge

the situations located in the north west and in the south east quadrants as the two

indicators move in opposite directions. In these quadrants, there are two regions, one

in the triangle below the curve in the north west quadrant, and one in the triangle

13For the sake of the graphical presentation, we excluded from the graph measures that could
be considered as outliers (growth in non poverty headcount larger or smaller than 100 percent,
and growth rates in life-expectancy larger than 90 percent or smaller than -40 percent). These are
however adequately accounted for in the following graph.
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Figure 2: Resolution of comparisons to a median country in 1990 and 2015

(a) 1990

(b) 2015

Only observations with life-expectancy > 40 are reported for readibility.

above the curve in the south east quadrant for which PALE is able to provide a

clear welfare comparison. These areas are the ones with shaded triangles, which

represent situations in which either welfare unambiguously improved (in the south

east quadrant) or unambiguously decreased (in the north west quadrant). If we agree

with the assumption that being dead is worse than being poor, these points represent

situations in which, in a particular country, the situation either strictly improved or

deteriorated compared to the situation in the same country five years earlier.14

Finally, Figure 5 reports, using the same comparisons, the evolution over time of

the frequency of ambiguous situations in which life-expectancy and poverty moved

in opposite directions in one country between t and t+5, and the share of these

ambiguous situations for which the most conservative definition of PALE provides a

14Again, if being dead is strictly worse than being poor, so that θ is always strictly lower than
one, more situations can be strictly signed for all other values of θ. They are located in the triangle
above the “zero-growth PALE1” in the NW quadrant, and in the triangle below the “zero-growth
PALE1” in the SE quadrant.

12



Figure 3: Evolution of the resolution of ambiguous inter-country comparisons, 1990-
2015

Reading: in 1990, countries had on average 23% of ambiguous comparisons, out of
which 25% where solved on average by the use of PALE.

Figure 4: Resolution of ambiguous countries’ evolutions, 1990-2015

Only observations for which the non poverty growth is lower than 100% and for
which the growth of life-expectancy is between 90% and - 40% are represented for
readibility.

clear ranking. Overall the share of ambiguous comparisons declines from about 30 to

20 percent over the period considered (with an overall average of 27 percent). Out

of these, we can solve an increasingly high share of welfare comparisons from about

20 in 1990 to more than 50 percent in the last years considered. Across all years,

PALE is able to solve an average of 38 percent of these comparisons.
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Figure 5: Evolution of the resolution of ambiguous countries’ evolutions, 1990-2015

2.3 PALE beyond the independence case

We have shown in Section 2.1 that PALE corresponds to a simplified version of

expected life-cycle utility (Eq. 3), under the assumption of independence. How-

ever, independence is unlikely in practice: mortality is selective, i.e. the poor die

younger than the non-poor (Chetty et al., 2016). Canudas-Romo (2018) points to

this limitation when criticizing the PFLE index of Riumallo-Herl et al. (2018), which

corresponds to PALE1. This may cast some doubts on whether PALE is a valid

measure of welfare. In this section, we show that this is indeed the case. Under our

two assumptions, PALE is a normalized expression of the expected life-cycle utility

in any stationary society.

There is a discrete set of periods {. . . , t − 1, t, t + 1, . . . }. In each period, some

individuals are born, all alive individuals are assigned a consumption status for the

period (P or NP ) and some individuals die (at the end of the period). We define the

life of an individual i as the list of consumption statuses li = (li0, . . . , lid) she enjoys

between age 0 and age d ∈ {0, . . . , a∗ − 1} at which she dies, where lia ∈ {NP,P}.

The set of lives is thus L = ∪d∈{0,...,a∗−1}{NP,P}d+1.

The number of newborns in period t is denoted by nt. The profile of lives for

the cohort born in t is denoted by Ct = (li)i∈{1,...,nt}, where {1, . . . , nt} is the set of

newborns in t. Clearly, the profile of lives Ct contains all the information necessary

to compute a newborn’s expected life-cycle utility (Eq. (3)). Let nt(a) denote the

number of individuals born in period t who are still alive when reaching age a. In

particular, we have nt(0) = nt. Let pt(a) denote the number of individuals born in

period t who are poor when at age a. Thus, we have pt(a) ≤ nt(a). By definition, the

probability that an individual born in t survives to age a is St(a) =
nt(a)
nt

, and the

conditional probability that an individual born in t will be poor when reaching age a

is πt(a) =
pt(a)
nt(a)

. To compute Eq. (3), it is sufficient to know the distribution on the

set of lives that Ct implicitly defines. We denote this distribution by Γt : L → [0, 1],

with
∑

l∈L Γt(l) = 1.
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In period t, we cannot observe the profile of lives for the cohort born in t. The only

elements of Ct that we observe in that period are nt(0), pt(0) and nt(1). However,

we also have information about the profile of lives of the cohorts born period before

t. Formally, let a society St be the list of profiles of lives for all cohorts born during

the a∗ periods in {t − (a∗ − 1), . . . , t}, i.e. St = (Ct−a∗+1, . . . , Ct). In period t, we

observe the number Nt of individuals who are alive in t, i.e.

Nt =
a∗−1∑

a=0

nt−a(a),

the fraction Ht of alive individuals who are poor in t,

Ht =

∑a∗−1
a=0 pt−a(a)

∑a∗−1
a=0 nt−a(a)

,

and the age-specific mortality vector µt = (µt
0, . . . , µ

t
a∗−1) in period t where for each

a ∈ {0, . . . , a∗ − 1} we have

µt
a =

nt−a(a)− nt−a(a+ 1)

nt−a(a)
,

with µt
a∗−1 = 1.

We now show that the information available in period t is sufficient to infer the

value of Eq. (3) in stationary societies. The particularity of stationary societies is

to have their natality, mortality and poverty constant over time. In a stationary

society, all the outcomes observed in a period simply replicates in the next period.

More formally, a society is stationary if both the distribution of lives and the size of

generations are constant over the last a∗ periods.

Definition 1 (Stationary society).

A society St is stationary if for any period t′ ∈ {t− a∗ + 1, . . . , t} we have

• Γt′ = Γt (constant distribution of lives),

• nt′ = nt (constant size of cohorts).

It follows immediatly from this definition that nt(a) = nt−a(a) and pt(a) =

pt−a(a) for all a ∈ {1, . . . , a∗ − 1}.15 These equalities lead to the following Lemma,

which allows us to relate Eq. (3) to the information available in period t.16

Lemma 1. If St is stationary,

St(a) = Πa−1
k=0(1− µt

k) for all a ∈ {0, . . . , a∗ − 1}, (5)

Nt = nt ∗ LEt, (6)

Nt ∗Ht = nt ∗

a∗−1∑

a=0

S(a)π(a). (7)

Proof. See Appendix 5.2

15Clearly, a constant distribution of lives is not sufficient for these equalities, one also needs a
constant size of cohorts.

16Lemma 1 also requires that nt(a + 1) = nt−a(a + 1) for all a ∈ {0, . . . , a∗ − 2}, which follows
from the definition of a stationary society.
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The three equations in Lemma 1 imply that an individual who is born in a sta-

tionary society can infer her expected life-cycle utility from the information available

at the year of her birth. (These direct relationships between current and future out-

comes in stationary societies are well-known to demographers (Preston et al., 2000).)

We illustrate this important insight using an example. Consider a stationary society

for which two individuals are born in each cohort, one living only for one period in

poverty and the other living for two periods out of poverty, i.e. n = 2, l1 = (P ) and

l2 = (NP,NP ). In period t, three individuals are alive: the poor born in t, the non-

poor born in t and the non-poor born in t−1. Also, two individuals die at the end of

period t: the poor born in t and the non-poor born in t− 1. Eq. (5) states that the

mortality rates observed in period t (the right hand side of the equation) can be used

to infer the mortality rates that the newborn can expect to face during her life-cycle

(the left hand side). Thus, in our example, a newborn observes that, at the end of

period t, half of the individuals of age 0 die and all individuals of age 1 die. Eq. (5)

implies that a newborn has a 50 percent chance to survive period t and a zero per-

cent chance to survive period t+1. According to Eq. (6), the number of individuals

who are alive in period t, Nt, is equal to the number of person-periods in the profile

of lives of the cohort born in period t. In our example, there are three individuals

alive in period t and there are three person-periods in Ct = (l1, l2) = (P ;NP,NP ).

Finally, Eq. (7) states that the number of poor observed in period t, Nt ∗ Ht, is

equal to the number of person-periods of poverty in the profile of lives of the cohort

born in period t. Indeed, there is one poor individuals alive in period t and one

person-period P in Ct.

Lemma 1 shows that, in a stationarity society, the poverty and mortality observed

in a given period perfectly define the profile of lives of newborns. Proposition 2

shows that PALE is a normalisation of the expected life-cycle utility of a newborn

in a stationary society even when mortality is selective, i.e. when the conditional

probability of being poor depends on age.

Proposition 2 (Connection between Harsanyi and PALE).

If society St is stationary, then PALEθ = EUt

uNP
.

Proof. The result follows directly when substituting Eq. (6) and (7) into Eq. (3).

We now discuss the implications of this result. The result shows that a newborn

can interpret PALE as a normalization of her expected life-cycle utility if she assumes

that she is born in a stationary population, i.e. if she assumes that poverty and

mortality that she observes at the time of her birth remain unchanged over the

course of her life. Clearly, in practice, populations are not stationary and we cannot

in general interpret PALE as the expected life-cycle utility of a newborn. Indeed, the

poverty and mortality observed at birth might not be good predictors for the future,

in particular if mortality and mortality decline over time with medical progress or

economic growth. Therefore, PALE should not be understood as a projection or a

forecast of the expected life-cycle utility.

This being said, the validity of PALE as an indicator of a society’s welfare in

period t does not rely on the interpretation one can give to PALE. More funda-

mentally, this validity depends essentially on whether PALE aggregates the welfare

losses due to the poverty and mortality observed in t in a meaningful way. Our result
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shows that this aggregation is meaningful in the sense that it is directly related to

the expected life-cycle utility of an individual confronted throughout her life to the

poverty and mortality observed in t. This is perfectly consistent with the idea of

evaluating welfare in period t. Indeed, the aggregation of the welfare losses observed

in period t should not depend on the future evolutions of poverty and mortality. For

instance, a transitory mortality or poverty shock – due to war or to another disaster

– does reduce current welfare, even if the country fully recovers in the next period. In

contrast, the transitory nature of the shock implies that its consequences are spread

across all the current generations. Its impact on the actual expected life-cycle util-

ity of newborns can be therefore be negligible, or nil if the shock did not affect the

mortality rates of newborns.

Observe that the same point can be made about life-expectancy at birth (LE).

In practice, this index is computed from the mortality vector observed in the period

(from Eq. (5)). As a result, this index typically does not correspond to the average

lifespan in a cohort born in a society that is not stationary. However, the aggregation

that this index makes of the mortality observed in the period is still considered valid

and is widely interpreted as the number of years of life that a newborn expects to

live in a society.

3 A transparent index of deprivation

One limitation of PALE is that it does not reflect the distributional concern in both

its dimensions. Although PALE does focus on low quality of life due to poverty,

PALE does not focus on low quantity of life. Indeed, an additional year of life

bestowed to an individual dying in old age has the same impact on PALE as an

additional year of life given to an individual dying in young age. Clearly, lifespan is

distributed less unequally than consumption (Peltzman, 2009), which slightly tunes

down the need to capture unequal lifespans when monitoring human development.

Nevertheless, concerns around unequal lifespans justify the use of an indicator that

is sensitive to very low lifespans.

For this reason, we apply our welfare index to measuring deprivation in the quality

and quantity of life. Multidimensional poverty indices capturing the quality and

quantity of life are plagued by the same limitations that we emphasized for welfare

indices. They typically lack solid theorethical foundationsor are black boxes with

opaque trade-offs (Ravallion, 2011b).

Two properties of a measure of deprivation require us to adapt the PALE index.

First, deprivation is the opposite concept of welfare, i.e. deprivation decreases when

welfare increases. Second, we must define deprivation in the quantity of life. Bor-

rowing from a long tradition focussing on absolute poverty, we consider as deprived

an individual who dies prematurely, i.e. who dies before reaching a minimal age

threshold â. Following Baland et al. (2021), we call “lifespan deprived” an individual

who dies before reaching the age threshold. As we show in the next section, under

these two properties, PALE naturally leads to a particular index of deprivation.
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3.1 The ED index

We call expected deprivation at birth (ED) the index defined by PALE in the depri-

vation context. ED is based on an indicator of mortality different from LE. Indeed,

when focusing on deprivation in the quantity of life, only the years of life lost before

reaching the minimal age threshold â matter. We therefore define another indicator

of mortality, the lifespan gap expectancy, which measures the number of years that a

newborn expects to lose prematurely.17 As above, letting nt(a) denote the number of

individuals born in period t who survive at least to age a and nt = nt(0), we have18:

LGEâ(Ct) =

â−1∑

a=0

(â− (a+ 1)) ∗
nt(a)− nt(a+ 1)

nt

.

We illustrate in Figure 6 the close connections between LGEâ and LE, where

LE =
∑a∗−1

a=0
nt(a)
nt

. In the figure, we construct a counterfactual population pyramid

by reporting for each age a the number nt(a) of newborns who are still alive at

age a. As explained in Section 2.3, this counterfactual pyramid exactly corresponds

to the population pyramid in period t if the society is stationary in period t.19 In

the left panel of Figure 6, LE is proportional to the area below the counterfactual

“stationary” population pyramid. By contrast, LGEâ is proportional to the area

between this “stationary” population pyramid and the age threshold. In the right

panel, we illustrate that, for large enough age thresholds, LGEâ is the complement

of LE. Formally, when â ≥ a∗ we have LGEâ = â− LE.

Age

Number

0 1 2 4

â

3

indiv .

n∗ ∗ LGEâ

n∗ ∗ LE

n
∗

Age

Number

0 1 2 43

indiv .

n∗ ∗ LGEâ

n∗ ∗ LE

n
∗

â

5

Figure 6: In the Left panel, the light grey area below the counterfactual “stationary”
population pyramid is a multiple of LE and the dark grey area is a multiple of LGEâ.
The Right panel illustrates that, when â ≥ a∗ we have LGEâ = â− LE.

The expected deprivation index, ED, aggregates the poverty and lifespan depri-

vation expected by a newborn, if she considers facing, throughout her life-cycle, the

poverty and mortality prevailing at the time of her birth. It combines a component

for deprivation in the quality of life and a component for deprivation in the quantity

17LGEâ is a particular version of the Years of Potential Life Lost, an indicator used in medical
research in order to quantify and compare the burden on society due to different death causes
(Gardner and Sanborn, 1990).

18See Proposition 5 for a mathematical expression for LGEâ that only depends on the poverty
and mortality observed in period t.

19In a stationary society, the current population pyramid can be obtained by successively applying
the current age-specific mortality rates to each age group.
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of life:

EDθ =
LGEâ

LE + LGEâ
︸ ︷︷ ︸

quantity deprivation

+θ
LE ∗H

LE + LGEâ
︸ ︷︷ ︸

quality deprivation

, (8)

where the parameter θ ∈ [0, 1] is defined in exactly the same way as for PALE.

Both components have the same denominator, which measures a normative lifes-

pan corresponding to the sum of LE and LGEâ. This normative lifespan can be

interpreted as the (counterfactual) life-expectancy at birth that would prevail if all

premature deaths were postoned to the age threshold. It is at least as large as LE,

and would be equal to LE if the age treshold is equal to 0.

The numerator of each term measures the expected number of years characterized

by one of the two dimensions of deprivation. The numerator of the quantity depri-

vation component measures the number of years that a newborn expects to loose

prematurely (when observing mortality in the period) given the age threshold, â.

The numerator of the quality deprivation component measures the number of years

that a newborn expects to spend in poverty (when observing the poverty and mortal-

ity in the period). As said above, these expectations are correct in the independence

case (see Section 2.1) or in stationary societies (see Section 2.3). In a stationary pop-

ulation, the term LE ∗H can be interpreted as the number of years that a newborn

expects to spend in poverty, because poverty and mortality observed in the period

perfectly reflect the poverty and mortality her cohort will be confronted to in the

future. Of course, this interpretation requires that the society is stationary (or that

the two dimensions are independent), which imply some caution when interpreting

ED. However, this does not invalidate its use as an indicator of deprivation in the

current period (see Section 2.3): again, a widely used index such as life-expectancy

suffers from exactly that same limitation but is nevertheless interpreted as if in a

stationary society.

Finally, the definition of EDθ is such that each year prematurely lost is as bad

as 1/θ years spent in poverty. This trade-off between the relative costs of poverty

and mortality is the same as for PALEθ.
20 When θ = 1, ED has a transparent

interpretation, as it computes the expected proportion of the normative lifespan

that a newborn expects to lose prematurely or spend in alive deprivation (assuming

a stationary society). Note also that, when lifespan deprivation is absent (LGE = 0),

ED1 corresponds to the headcount ratio, H .

In Proposition 3, we establish the relation between ED and PALE under the two

properties of deprivation discussed above. First, EDθ leads to the opposite ranking

as PALEθ as long that the age threshold is irrelevant, i.e. larger than the maximal

age. When the age treshold is binding (smaller than the maximal age), the rankings

obtained under EDθ do not correspond to the opposite of the ranking obtained under

PALEθ.

Proposition 3 (Connection between ED and PALE).

If â ≥ a∗, then PALEθ = â(1 − EDθ), which implies that, for any two societies A

20We assume here that the welfare costs of a year prematurely lost is uNP .
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and B,

PALEθ(A) ≥ PALEθ(B) ⇔ EDθ(A) ≤ EDθ(B).

Proof. See Appendix 5.3.

Taken together, Propositions 2 and 3 show that ED aggregates two indices of

mortality, LE and LGEâ, with an index of poverty, H , in a way which is consistent

with life-cycle preferences. This improves on standard multidimensional poverty

indices, but ED also relies on a normative parameter that weights the two dimensions.

Again, one may wonder whether aggregating the two component indices is very useful

when there is no consensus on the value that this parameter should take. Proposition

4 shows that some pairwise comparisons do not depend on the latter value, even if

these pairs are not related by domination.

Proposition 4 (Unambiguous comparisons of deprivation).

For any â ∈ {2, . . . , a∗} and any two societies A and B, EDθ(A) > EDθ(B) for all

θ ∈ [0, 1] if and only if ED0(A) > ED0(B) and ED1(A) > ED1(B).

There exist societies A and B with H(A) < H(B) such that EDθ(A) > EDθ(B)

for all θ ∈ [0, 1].

Proof. See Appendix 5.4.

3.2 Relation with other indices of deprivation

We limit the comparisons to other indices in the literature to a comparison with the

index of generated deprivation (GD) proposed by Baland et al. (2021). The reason

is that GD index is closest to the ED index, and Baland et al. (2021) discuss in

details the relationships between GD and other indices of multidimensional poverty.

In a nutshell, ED and GD are identical in stationary societies, but ED has a simpler

interpretation than GD, reacts faster to permanent mortality shocks and is slightly

less demanding in terms of data. However, GD is decomposable in subgroup whereas

ED is not.

The GD index is defined as21

GDθ =
Y Lt

Nt + Y Lt
︸ ︷︷ ︸

quantity deprivation

+θ
Nt ∗Ht

Nt + Y Lt
︸ ︷︷ ︸

quality deprivation

, (9)

where θ ∈ [0, 1], Nt =
∑a∗−1

a=0 nt−a(a) is the population observed in t and Y Lt is the

number of years of life prematurely lost due to mortality in year t, i.e.

Y Lt =

â−2∑

a=0

nt−a(a) ∗ µ
t
a ∗ (â− (a+ 1)),

with µt = (µt
0, . . . , µ

t
a∗−1) again standing for the vector of age-specific mortality

rates.

Mathematically, the GD index is based on the same two components, one cap-

turing quality deprivation and the other quantity deprivation. Moreover, the same

21The generated deprivation index defined in Baland et al. (2021) is 1
θ
GDθ, which is ordinally

equivalent to GDθ since θ is a constant.
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normative weights is used for these two components. One disadvantage of GD is that

these components are harder to interpret. This is because GD combines a number

of poor with a number of years of life prematurely lost. The fundamental reason for

this is that the number of poor in a particular year corresponds to the number of

years lived in poverty in that year. This equivalence also explains why the denom-

inator of GD sums a number of individuals with a number of years. By contrast,

the numerators of the two terms in ED are more easily interpretable. They are the

number of years that a newborn expects to prematurely loose or spend in poverty, if

she expects mortality and poverty to stay at their observed levels.

The following proposition establishes that GD and ED are identical in stationary

societies.

Proposition 5 (ED and GD are identical in stationary societies).

If society St is stationary,

LGEâ(St) =

â−1∑

a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏

k=0

(1− µt
k), (10)

which yields GDθ(St) = EDθ(St) for all θ ∈ [0, 1].

Proof. See Appendix 5.5.

Following Proposition 5, ED and GD yield the same ranking for stationary soci-

eties. However, societies are typically not stationary and ED and GD rank countries

in different ways.

The main difference between ED and GD comes from the way the two indices

compute the number of years prematurely lost. ED takes the perspective of a new-

born who faces throughout her life the mortality rates observed in t. In contrast,

GD computes the number of years that are lost by the current population due to

the premature mortality observed in t. It records, over all premature deaths in t∗,

the number of years prematurely lost. Thus, if an individual dies at age 20 and the

age threshold is 70, her premature death leads to a loss of 50 years of life. It is

worth noting here that ED also counts the number of years prematurely lost, but

instead of being computed for the actual population pyramid, ED uses a counterfac-

tual population pyramid, which is the one that would prevail in a stationary society

characterized by the age-specific mortality rates observed in t.

A major implication of this difference is that ED is more reactive to policy changes

than GD. Consider a permanent mortality shock. The population dynamics is such

that a transition phase sets in during which the population pyramid slowly adjusts

to the new mortality rates. This transition stops when a new stationary population

pyramid is reached, typically after a∗ periods. GD records each step of this transi-

tion and therefore exhibits inertia in its response to a permanent mortality shock.

By contrast, ED immediately refers to the new stationary population pyramid and

disregard the inertia caused by transitory demographic adjustments.

We illustrate this difference between ED and GD with the help of a simple exam-

ple. Consider a population with a fixed natality nt(0) = 2 for all periods t. At each

period, all alive individuals are non-poor, implying that Ht = 0. For all t < 0, we

assume a constant mortality vector µt = µ∗ = (0, 1, 1, 1), so that each individual lives

exactly two periods. Let us assume â = 4, so that an individual dies prematurely if
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she dies before her fourth period of life. Before period t = 0, the population pyramid

is stationary, and the two indices are equal to 1/2 because there is no poor and indi-

viduals live for two periods instead of four. Consider now a permanent shock starting

from period 0 onwards, such that half of the newborns die after their first period of

life: µ0 = (1/2, 1, 1, 1). The population pyramid returns to its stationary state in

period 1, after a (mechanical) transition in period 0. This example is illustrated in

Figure 7.
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1 2
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Figure 7: Response of GD and ED to a permanent mortality shock in t = 0. The
years prematurely lost are shaded.

Consider first GD. In period 0, the actual population pyramid is not stationary

because of the mortality shock. The premature death of one newborn leads to the

loss of three years of life. Also, two one-year old individuals die in period 0, each

losing two years of life. There are thus 7 years of life prematurely lost in period 0,

and GD takes value 7/11. In period 1, the population pyramid is stationary, and

GD is equal to 5/8 from then on.

We now turn to ED. Even if the actual population pyramid is not stationary in

period 0, ED is immediately equal to 5/8 since it records premature mortality as if

the population pyramid had already reached its new stationary level. ED focusses on

the newborn and the one-year old who die prematurely, ignoring that there are two

one-year old dying in the actual population pyramid in period 0 (which is a legacy

of the past).

Baland et al. (2021) show that GD is essentially the only index decomposable in

subgroups to compare stationary societies in a way that satisfy basic properties.22

As a result, ED cannot be decomposable in subgroups. This is no surprise given

that ED is based on LE, which cannot be decomposed in subgroups. In Appendix

6, we show that ED is essentially the only index that is independent on the actual

population pyramid and compares stationary population in a way that respect basic

properties of deprivation. This is important since it implies that information on the

22Baland et al. (2021) show that basic properties define an Inherited Deprivation index, ID, which
is based on premature mortality that took place in the past. They then show that GD is the only
index that is based on premature mortality in year t, which is equivalent to ID in stationary societies
and decomposable in subgroups.
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actual population pyramid is irrelevant for ED, since only age-specific mortality rates

are required.

4 Concluding remarks

An important limitation of indices PALE and ED is that they account for the distri-

butional concern “dimension-by-dimension” instead of accounting for them in terms

of life-cycle utility. Indeed, our indices are insensitive to the allocation of years of life

prematurely lost between the poor and the non-poor. This allocation may however

have important implications for the distribution of life-cycle utility. Indeed, when

the poor die early, they combine low achievements in the two dimensions and the

difference between their life-cycle utility and that of the non-poor increases. With-

out denying the importance of this limitation, let us first note that this limitation

is shared by most standard indices of human development.23 Second, addressing

this limitation requires data that are typically not available. One natural way of ac-

counting for such “concentration” of deprivations on the same individuals would be to

define as “life-cycle poor” individuals whose life-cycle utility is smaller than that of a

reference life l∗. Then, an index of human development could for instance correspond

to the expected fraction of newborns who will be “life-cycle poor”. This type of index

would not be ad-hoc, but would require better data, combining poverty and mortality

at the individual level, than what is currently available in most countries. Moreover,

this type of data, recording mortality up to a given threshold, would necessarily be

historical in nature, with little relevance to the current situation. Alternatively, one

may want to define indices that are less demanding in terms of information, and

would be based on the observed mobility between poverty and non-poverty, as well

as mortality figures for the poor and the non-poor. Some additional assumptions

would then be needed to translate this information into live profile for newborns.
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5 Appendix 1: Proofs

5.1 Proof of Proposition 1

We start with the “only if” part of the first statement. Assume to the contrary that

LE(A) > LE(B) or PALE1(A) > PALE1(B). As PALE0 = LE, this implies

that PALEθ(A) > PALEθ(B) for some θ ∈ {0, 1} and therefore we cannot have

PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1].

We turn to the “if” part of the first statement. By definition of the PALE index,

we have to show that

LE(B)− LE(A) > θ ∗ (H(B)−H(A)), (11)

for all θ ∈ [0, 1]. As LE(A) < LE(B), we have LE(B)−LE(A) > 0. As PALE1(A) <

PALE1(B), we have LE(B)−LE(A) > (H(B)−H(A)). It immediately follows that

the inequality (11) is verified for all values of θ smaller than 1.

From the first statement, proving the second statement only requires providing A

and B with H(A) < H(B) such that LE(A) < LE(B) and PALE1(A) < PALE1(B).

If H(A) = 0.2, H(B) = 0.4, LE(A) = 50 and LE(B) = 75 we have PALE1(A) = 40

and PALE1(A) = 45, the desired result.

5.2 Proof of Lemma 1

We first prove Eq (5). As St is stationary, we have nt(k) = nt−k(k) for all k ∈

{1, . . . , a∗− 1} and nt(k+1) = nt−k(k+1) for all k ∈ {0, . . . , a∗ − 2}. Therefore, we

have for all a ∈ {1, . . . , a∗ − 1} that

St(a) =
nt(a)

nt

,

= Πa−1
k=0

nt(k + 1)

nt(k)
,

= Πa−1
k=0

nt−k(k + 1)

nt−k(k)
,

= Πa−1
k=0(1− µt

k).

We then prove Eq (6). As St is stationary, we have nt(a) = nt−a(a) for all a ∈

{1, . . . , a∗ − 1}. Recalling that St(a) =
nt(a)
nt

, we can successively write

LEt =

a∗−1∑

a=0

St(a),

=

∑a∗−1
a=0 nt(a)

nt

,

=

∑a∗−1
a=0 nt−a(a)

nt

,

= Nt/nt.

Finally, we prove Eq. (7). As St is stationary, we have pt(a) = pt−a(a) for all a ∈

{1, . . . , a∗ − 1}. Recalling that πt(a) =
pt(a)
nt(a)

and St(a) =
nt(a)
nt

, we can successively
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write

Ht =

∑a∗−1
a=0 pt−a(a)

∑a∗−1
a=0 nt−a(a)

,

=

∑a∗−1
a=0 pt(a)

Nt

,

=

∑a∗−1
a=0 πt(a)St(a)nt

Nt

.

5.3 Proof of Proposition 3

We show that LE + LGEâ = â when â ≥ a∗.

LGEâ(Ct) =

â−1∑

a=0

â ∗
nt(a)− nt(a+ 1)

nt

−

â−1∑

a=0

(a+ 1) ∗
nt(a)− nt(a+ 1)

nt

,

=
1

nt

(

â ∗ (nt(0)− nt(â))−

â−1∑

a=0

nt(a) + â ∗ nt(â)

)

,

= â−
â−1∑

a=0

nt(a)

nt

.

By definition of a∗, we have nt(a) = 0 for all a ≥ a∗. When â ≥ a∗, this implies

that
∑â−1

a=0
nt(a)
nt

=
∑a∗−1

a=0
nt(a)
nt

, where by definition LE =
∑a∗−1

a=0
nt(a)
nt

, the desired

result.

Thus, when â ≥ a∗, PALEθ is a linear function of EDθ that depends negatively

on EDθ. Therefore, these two indicators yields opposite ranking of all societies A

and B, i.e. PALEθ(A) ≥ PALEθ(B) ⇔ EDθ(A) ≤ EDθ(B).

5.4 Proof of Proposition 4

We start with the “only if” part of the first statement. Assume to the contrary that

ED0(A) < ED0(B) or ED1(A) < ED1(B). This implies that EDθ(A) < EDθ(B)

for some θ ∈ {0, 1} and therefore we cannot have EDθ(A) > EDθ(B) for all θ ∈ [0, 1].

We turn to the “if” part of the first statement. By definition of the ED index, we

have to show that

LGEâ(A)

LE(A) + LGEâ(A)
−

LGEâ(B)

LE(B) + LGEâ(B)
> θ

(
LE(B) ∗H(B)

LE(B) + LGEâ(B)
−

LE(A) ∗H(A)

LE(A) + LGEâ(A)

)

(12)

for all θ ∈ [0, 1]. As ED1(A) > ED1(B), Eq. (12) holds for θ = 1. As ED0(A) >

ED0(B), the LHS of Eq. (12) is strictly positive. It immediately follows that the

inequality (12) is verified for all values of θ smaller than 1.

From the first statement, proving the second statement only requires providing A

and B with H(A) < H(B) such that ED0(A) > ED0(B) and ED1(A) > ED1(B).

If H(A) = 0.5, H(B) = 0.6, LE(A) = 1, LE(B) = â, LGEâ(A) = â − 1 and

LGEâ(B) = 0 we have ED0(A) =
â−1
â

, ED0(B) = 0, ED1(A) =
â−0.5

â
, ED1(B) =

H(B). This yields the result since â ≥ 2 implies ED0(A) > 0 and ED1(A) ≥ 0.75.
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5.5 Proof of Proposition 5

We first prove Eq. (10). As St is stationary, we have that nt(a) = nt−a(a) and

nt(a+ 1) = nt−a(a+ 1) for all a ∈ {0, . . . , a∗ − 1}. We can thus successively write

LGEâ(St) =

â−1∑

a=0

(â− (a+ 1)) ∗
nt(a)− nt(a+ 1)

nt(a)
∗
nt(a)

nt

,

=

â−1∑

a=0

(â− (a+ 1)) ∗
nt−a(a)− nt−a(a+ 1)

nt−a(a)
∗ St(a).

As society St is stationary, Lemma 1 applies and we have St(a) = Πa−1
k=0(1−µt

k) (Eq.

(5)). The result follows from the definition of the age-specific mortality rate, i.e.

µt
a = nt−a(a)−nt−a(a+1)

nt−a(a)
.

We then proves that GDθ(St) = EDθ(St) for all θ ∈ [0, 1]. As society St is

stationary, Lemma 1 applies and we have Nt = ntLEt (Eq. (6)). Substituting this

expression for Nt into the definition of GDθ yields the result if we have Y Lt =

ntLGEâ.

There remains to show that Y Lt = ntLGEâ. As society St is stationary, Lemma

1 applies and we have nt−a(a)
nt

=
∏a−1

k=0(1−µt
k) (Eq. (5)). Substituting this expression

for nt−a(a) into the definition of Y Lt, which we recall is Y Lt =
∑â−2

a=0 nt−a(a) ∗ µ
t
a ∗

(â− (a+ 1)), yields

Y Lt = nt

â−2∑

a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏

k=0

(1− µt
k),

which shows that Y Lt = ntLGEâ (see Eq. (10) and recall that â− (a+1) = 0 when

a = â− 1), the desired result.

6 Appendix: Characterization of the ED index

First, we introduce the set-up used in Baland et al. (2021), which we use for the

characterization of ED.

Each individual i is associated to a birth year bi ∈ Z. In period t, each individual

i with bi ≤ t is characterized by a bundle xi = (ai, si), where ai = t− bi is the age

that individual i would have in period t given her birth year bi, and si is a categorical

variable capturing individual status in period t, which can be either alive and non-

poor (NP ), alive and poor (AP ) or dead (D), i.e. si ∈ S = {NP,AP,D}. In the

following, we often refer to individuals whose status is AP as “poor”. We consider

here that births occur at the beginning while deaths occur at the end of a period.

As a result, an individual whose status in period t is D died before period t.24

An individual “dies prematurely” if she dies before reaching the minimal lifespan

â ∈ N. Formally, period t is “prematurely lost” by any individual i with si = D and

ai < â. A distribution x = (x1, . . . , xn(x)) specifies the age and the status in period

t of all n(x) individuals. Excluding trivial distributions for which no individual is

24All newborns have age 0 during period t and some among these newborns may die at the end
of period t. This implies that bi = t ⇒ si 6= D.
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alive or prematurely dead, the set of distributions in period t is

X = {x ∈ ∪n∈N(Z × S)n | there is i for whom either si 6= D or si = D and â > t− bi}.

Baland et al. (2021) show that the most natural consistent index to rank distri-

butions in X is the inherited deprivation index (ID). Let d(x) denote the number of

prematurely dead individuals in distribution x, which is the number of individuals i

for whom si = D and â > t − bi, p(x) the number of individuals who are poor and

f(x) the number of alive and non-poor individuals. The ID index is defined as

IDθ(x) =
d(x)

f(x) + p(x) + d(x)
︸ ︷︷ ︸

quantity deprivation

+θ
p(x)

f(x) + p(x) + d(x)
︸ ︷︷ ︸

quality deprivation

, (13)

where θ ∈ [0, 1] is a parameter weighing the relative importance of alive deprivation

and lifespan deprivation. An individual losing prematurely period t matters 1/θ

times as much as an individual spending period t in alive deprivation.

We introduce additional notation for the mortality taking place in period t. Con-

sider the population pyramid in period t, and let na(x) be the number of alive indi-

viduals of age a in distribution x, i.e. the number of individuals i for whom ai = a

and si 6= D. (The definition of na(x) corresponds to nt−a(a) in the notation used in

the main text of the paper. In this section, we adopt the notation of Baland et al.

(2021), which does not require to mention period t.) The age-specific mortality rate

µa ∈ [0, 1] denotes the fraction of alive individuals of age a dying at the end of period

t: the number of a-year-old individuals dying at the end of period t is na(x)∗µa. Let-

ting a∗ ∈ N stand for the maximal lifespan (which implies µa∗−1 = 1), the vector of

age-specific mortality rates in period t is given by µ = (µ0, . . . , µa∗−1). Vector µ

summarizes mortality in period t, while distribution x summarizes alive deprivation

in period t as well as mortality before period t. The set of mortality vectors as:

M =
{

µ ∈ [0, 1]a
∗

∣
∣
∣µa∗−1 = 1

}

.

We consider pairs (x, µ) for which the distribution x is a priori unrelated to

vector µ. We assume that the age-specific mortality rates µa must be feasible given

the number of alive individuals na(x). Given that distributions have finite numbers

of individuals, mortality rates cannot take irrational values, i.e. µa ∈ [0, 1]∩Q, where

Q is the set of rational numbers. The set of pairs considered is

O =

{

(x, µ) ∈ X ×M
∣
∣
∣for all a ∈ {0, . . . , a∗} we have µa =

ca
na(x)

for some ca ∈ N

}

.

Letting da(x) be the number of dead individuals born a years before t in dis-

tribution x, the total number of individuals born a years before t is then equal to

na(x) + da(x). Formally, the pair (x, µ) is stationary if, for some n∗ ∈ N and all

a ∈ {0, . . . , a∗}, we have:

• na(x) + da(x) = n∗ ∈ N (constant natality),

• na+1(x) = na(x) ∗ (1− µa) (identical population pyramid in t+ 1).

In a stationary pair, the population pyramid is such that the size of each cohort can
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be obtained by applying to the preceding cohort the current mortality rate. The pair

associated to a stationary society (as defined in the main text) is stationary.

An index is a function P : O × N → R+. We simplify the notation P (x, µ, â) to

P (x, µ) as a fixed value for â is assumed.

We now introduce the properties characterizing ED. ID Equivalence requires that,

as current mortality (in period t) is the same as mortality from previous periods in

stationary societies, any index defined on current mortality rates is equivalent to ID

in the case of a stationary pair.25

Deprivation axiom 1 (ID Equivalence). There exists some θ ∈ (0, 1] such that

for all (x, µ) ∈ O that are stationary we have P (x, µ) = IDθ(x).

Independence of Dead requires that past mortality does not affect the index.

More precisely, the presence of an additional dead individual in distribution x does

not affect the index.

Deprivation axiom 2 (Independence of Dead). For all (x, µ) ∈ O and i ≤ n(x),

if si = D, then P ((xi, x−i), µ) = P (x−i, µ).

Independence of Birth Year requires that the index does not depend on the birth

year of individuals, i.e. only their status matters. As Independence of Dead requires

to disregard dead individuals, the only relevant information in x is whether an alive

individual is poor or not.

Deprivation axiom 3 (Independence of Birth Year). For all (x, µ) ∈ O and

i ≤ n(x), if si = s′i, then P ((xi, x−i), µ) = P ((x′
i, x−i), µ).

Replication Invariance requires that, if a distribution is obtained by replicating

another distribution several times, they both have the same deprivation when asso-

ciated to the same mortality vector. By definition, a k-replication of distribution x

is a distribution xk = (x, . . . , x) for which x is repeated k times.

Deprivation axiom 4 (Replication Invariance). For all (x, µ) ∈ O and k ∈ N,

P (xk, µ) = P (x, µ).

Proposition 6 shows that these properties jointly characterize the ED index.

Proposition 6 (Characterization of ED).

P = EDθ if and only if P satisfies Independence of Dead, ID Equivalence, Replica-

tion Invariance and Independence of Birth Year.

Proof. We first prove sufficiency. Proving that the ED index satisfies Independence

of Dead, Replication Invariance and Independence of Birth Year is straightforward

and left to the reader. Finally, ED index satisfies ID Equivalence because ED is equal

to GD in stationary populations (Proposition 5) and GD satisfies ID Equivalence (see

Baland et al. (2021)). (The pairs associated to stationary societies are stationary).

We now prove necessity. Take any pair (x, µ) ∈ O. We construct another pair

(x′′′, µ) that is stationary and such that P (x′′′, µ) = P (x, µ) and ED(x′′′, µ) =

ED(x, µ). Given that (x′′′, µ) is stationary, we have by ID Equivalence that P (x′′′, µ) =

25Recall that past mortality is recorded in distribution x while current mortality is recorded in
vector µ. As vector µ is redundant in stationary pairs, in the sense that µ can be inferred from the
population pyramid, the index can be computed on distribution x only. See Baland et al. (2021)
for a complete motivation for this axiom.
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IDθ(x
′′′, µ) for some θ ∈ (0, 1]. As IDθ = GDθ = EDθ for stationary pairs, we have

P (x′′′, µ) = EDθ(x
′′′, µ) for some θ ∈ (0, 1]. If we can construct such pair (x′′′, µ),

then P (x, µ) = EDθ(x, µ) for some θ ∈ (0, 1], the desired result.

We turn to the construction of the stationary pair (x′′′, µ), which will be based

on the construction of two intermediary pairs (x′, µ) and (x′′, µ). One difficulty is to

ensure that the mortality rates µa ca be achieved in the stationary population given

the number of alive individuals na(x
′′′), which is µa = c

na(x′′′) for some c ∈ N.

We first construct a n′−replication of x that has sufficiently many alive individuals

to meet this constraint. For any a ∈ {0, . . . , a∗ − 1}, take any naturals ca and ea

such that µa = ca
ea

. Let e =
∏a∗−1

j=0 ej , n
′
a = e

∏a−1
j=0 (1 −

cj
ej
) and n′ =

∑a∗−1
j=0 n′

j .
26

Let x′ be a n′−replication of x. Letting nx =
∑a∗−1

j=0 nj(x) be the number of alive

individuals in distribution x, we have that x′ has n′ ∗ nx alive individuals. We have

P (x′, µ) = P (x, µ) by Replication Invariance.

We define x′′ from x′ by changing the birth years of alive individuals in such a

way that (x′′, µ) has a population pyramid that is stationary. Formally, we construct

x′′ with n(x′′) = n(x′) such that

• dead individuals in x′ are also dead in x′′,

• alive individuals in x′ are also alive in x′′ and have the same status,

• the birth year of alive individuals are changed such that, for each a ∈ {0, . . . , a∗−

1}, the number of a-years old individuals is n′ ∗ nx ∗

∏a−1

j=0
(1−

cj

ej
)

∑a∗
−1

k=0

∏k−1

j=0
(1−

cj

ej
)
.27

One can check that (x′′, µ) has a population pyramid corresponding to a station-

ary population and that each age group has a number of alive individuals in N. We

have P (x′′, µ) = P (x′, µ) by Independence of Birth Year.

Define x′′′ from x′′ by changing the number and birth years of dead individuals in

such a way that (x′′′, µ) is stationary. To do so, place exactly n0(x
′′)− na(x

′′) dead

individuals in each age group a. We have P (x′′′, µ) = P (x′′, µ) by Independence of

Dead.

Together, we have that P (x′′′, µ) = P (x, µ). Finally, by construction we have

H(x′′′) = H(x), which implies that ED(x′′′, µ) = ED(x, µ).

26These numbers imply that a constant natality of e newborns leads to a stationary population
of n′ alive individuals.

27Observe that
∑a∗

−1
k=0

∏k−1
j=0 (1−

cj
ej

) = LE, implying that e = n′
∗nx

∑a∗
−1

k=0

∏k−1

j=0
(1−

cj
ej

)
.
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